Perbandingan dan Optimasi Metode Pembuatan Kompeten Sel Escherichiae coli, Media dan Suhu Transformasi pET-32-HCR-CTB sebagai Dasar Pengembangan Kandidat Vaksin COVID
Abstract
Vaksinasi merupakan salah satu strategi utama dalam mengatasi pandemi. Saat ini sebagian besar vaksin yang dikembangkan merupakan vaksin berbasis teknologi rekombinan. Protein rekombinan sering menggunakan bakteri Escherichia coli (E. coli) karena mudah dimanipulasi secara genetik dan relatif aman untuk dikembangkan. Teknologi DNA rekombinan menggunakan berbagai jenis plasmid sebagai vektor utama yang memfasilitasi masuknya DNA rekombinan ke dalam bakteri. Plasmid pET-32 merupakan plasmid yang dikembangkan untuk kloning dan ekspresi protein rekombinan pada E. coli. Meskipun metode transformasi plasmid pada bakteri cukup lama dikembangkan, namun sering menemui kendala dalam prosesnya. Penelitian ini bertujuan mengembangkan metode pembuatan sel kompeten dan metode transformasi yang paling efektif. Metode pembuatan sel kompeten dengan menggunakan calcium chloride (CaCl₂) dan dimethyl sulfoxide (DMSO), serta optimasi transformasi gen pET-32-HCR-CTB ke dalam sel kompeten BL21 dilakukan menggunakan kondisi heat shock pada suhu 42°C selama 45 detik dan 60 detik. Hasil penelitian menunjukkan bahwa penggunaan DMSO dalam pembuatan sel kompeten menghasilkan efisiensi transformasi sebesar 3,5 × 10³ CFU/µg. Klon bakteri yang tumbuh setelah proses transformasi kemudian diuji menggunakan PCR, yang mengonfirmasi keberadaan gen pET-32-HCR-CTB. Dengan demikian, variasi metode pembuatan sel kompeten BL21 dan kondisi optimum transformasi yang diperoleh dalam penelitian ini dapat digunakan sebagai dasar untuk pengembangan lebih lanjut dalam produksi vaksin COVID berbasis protein rekombinan.
Vaccination is one of the main strategies in combating the pandemic. Currently, most vaccines being developed are based on recombinant technology. Recombinant protein production frequently utilizes E. coli due to its ease of genetic manipulation and relative safety for development. Recombinant DNA technology employs various types of plasmids as primary vectors to facilitate the insertion of recombinant DNA into bacterial cells. The pET-32 plasmid is one such vector, designed for cloning and expressing recombinant proteins in E. coli. Although plasmid transformation methods in bacteria have been developed for a long time, the process often encounters several challenges. This study aims to develop an effective method for preparing competent cells and optimizing the transformation process. The competent cells were prepared using calcium chloride (CaCl₂) and dimethyl sulfoxide (DMSO), and the transformation of the pET-32-HCR-CTB gene into BL21 competent cells was optimized using a heat shock at 42°C for 45 seconds and 60 seconds. The results showed that the use of DMSO in competent cell preparation resulted in a transformation efficiency of 3.5 × 10³ CFU/µg. Bacterial clones that grew after the transformation process were tested using PCR, confirming the presence of the pET-32-HCR-CTB gene. Therefore, the variation in the BL21 competent cell preparation method and the optimized transformation conditions obtained in this study can serve as a foundation for further development of recombinant protein-based COVID vaccine production.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol. 2014 Mar 10;12(3):181–96. doi: https://doi.org/10.1038/nrmicro3199
Yurina V. Coronavirus epitope prediction from highly conserved region of spike protein. Clin Exp Vaccine Res. 2020;9(2):169. doi: https://doi.org/10.7774/cevr.2020.9.2.169
Patigu RF, Wijayanti P, Sebastian A, Purwestri YA. Optimization of heat shock temperature and time on the transformation of pRGEB32 into Escherichia coli DH5ñ. J Biol Trop. 2021 Sep 13;21(3):632–40. doi: http://dx.doi.org/10.29303/jbt.v21i3.2811
Chan WT, Verma CS, Lane DP, Gan SKE. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci Rep. 2013 Dec 1;33(6). doi: https://doi.org/10.1042/bsr20130098
Hans S, Gimpel M, Glauche F, Neubauer P, Cruz-Bournazou MN. Automated Cell Treatment for Competence and Transformation of Escherichia coli in a High-Throughput Quasi-Turbidostat Using Microtiter Plates. Microorganisms. 2018 Jun 25;6(3):60. doi: https://doi.org/10.3390/microorganisms6030060
Lim G, Lum D, Ng B, Sam C. Differential Transformation Efficiencies Observed for PUC19 and pBR322 in E. coli May Be Related to Calcium Chlorode Concentration. J Exp Microbiol Immunol (JEMI). 2015;1–6.
Liu J, Chang W, Pan L, Liu X, Su L, Zhang W, et al. An Improved Method of Preparing High Efficiency Transformation Escherichia coli with Both Plasmids and Larger DNA Fragments. Indian J Microbiol. 2018 Dec 29;58(4):448–56. doi: https://doi.org/10.1007/s12088-018-0743-z
Panja S, Aich P, Jana B, Basu T. How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli? Mol Membr Bio. 2008 Jan 9;25(5):411–22. doi: https://doi.org/10.1080/09687680802187765
Matlock B. Assessment of Nucleic Acid Purity. Technical Note 52646. Wilmington, MA, USA: Thermo Fisher Scientific; 2015.
DOI: https://doi.org/10.18860/jip.v10i1.31390
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Journal of Islamic Pharmacy

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2023 Journal of Islamic Pharmacy





