

Cognitive emotion regulation strategies: A study of Iraqi ISIS survivors

Article History

Accepted
October 10, 2025

Received
September 16, 2025

Published
October 13, 2025

Marwa Abd-Alzim^{1*}

¹ Department of Psychology, University of Karbala, Karbala,
Iraq

ABSTRACT

This study investigates the cognitive emotion regulation strategies applied by ISIS Iraq attack survivors in general and specific psychological results and effects of war-related trauma. This cross-sectional study intended to investigate gender and age differences in the use of maladaptive and adaptive coping strategies, utilizing the Cognitive Emotion Regulation Questionnaire-Arabic Version (CERQ-AR) among 420 survivors from Mosul, Iraq. Data were analyzed using confirmatory factor analysis (CFA), independent t-tests, and correlational analysis. Results showed that males scored significantly higher than females on rumination, catastrophizing, and other-blame. However, no gender difference was found in the case of adaptive strategies. The finding implies that these differences could be a function of the traditional gender roles in Iraqi society, especially in conservative areas like Mosul. Secondly, age as a variable in how these strategies are adopted: older individuals show a decline in maladaptive coping but an increase in other-blame. The research study ended with the recommendation that such cognitive emotion regulation strategies in post-conflict settings should be pursued through gender- and age-specific interventions.

KEY WORDS:

emotion regulation; ISIS survivors; war-related trauma; maladaptive coping; CERQ

¹ Corresponding Author: Marwa Abd-Alazim, email: maroa.abd@uokerbala.edu.iq, Department of Psychology, University of Karbala, Karbala, Karbala Governorate, Iraq

Introduction

The invasion of Iraq by the Islamic State of Iraq and Syria (ISIS) in 2014 represented a catastrophic event that left a profound and lasting impression on the nation. The extremist group's rule was defined by mass killings forced displacement and the destruction of cultural heritage which created immense hardship for the Iraqi people. The psychological impact of this ordeal has been immense. As they attempt to process what they have seen and personally gone through survivors are now faced with considerable mental health difficulties often presenting with complex trauma responses. Developing a clear picture of the cognitive-emotional mechanisms that underlie these responses is therefore a critical step for effective intervention (Demir et al., 2020).

The current investigation centers on the link between an individual's exposure to warfare and the subsequent mental health outcomes. There is considerable support for a connection between traumas related to war and the onset of long-term psychological distress. More than a simple set of symptoms, exposure to trauma seems to reshape cognitive-emotional functions which can lead to intrusive memories a state of heightened watchfulness and pronounced trouble with managing emotional responses (Behrendt et al., 2023). It is these cognitive-emotional pathways that are understood to be fundamental in the onset and continuation of post-traumatic stress disorder (PTSD), depression, and anxiety. This makes the examination of emotion regulation techniques a particularly important avenue for research in aiding recovery after conflict.

Cognitive emotion-regulation strategies (CERS) refer to the conscious cognitive processes that individuals employ to manage or modify their emotional reactions to stressful experiences (Gross, 2015). These strategies have a particularly significant function in recovery from trauma. They can operate as a mediator between the exposure to a traumatic event and subsequent mental health outcomes. The use of adaptive CERS can help support resilience while maladaptive strategies can worsen psychological distress (Jelinek et al., 2021). Because of this it is important to investigate the specific ways Iraqi survivors of the ISIS invasion utilize CERS to develop effective mental health supports for this population.

Cognitive theories of emotion, like the ones put forth by Gross (1998) and

Lazarus (1991), offer a solid basis for the relationship between CERS and mental health. The core idea of these models is that it is not the event itself that shapes the emotional outcome but rather it is the individual's appraisal of that event. It is this very appraisal process that CERS directly influences. For example, a strategy like positive reappraisal can shift the meaning of a negative event and in doing so reduce its emotional sting. In contrast maladaptive strategies, such as catastrophizing, blow up negative appraisals, and this leads to elevated distress. In populations that have gone through conflict a continued reliance on these maladaptive CERS often correlates with severe psychopathology, given that these particular strategies can prevent emotional processing and adaptation to the traumatic experience (Sheykh et al., 2016).

Garnefski et al. (2002) characterized cognitive emotion regulation strategies as "an individual's thoughts after having experienced a negative event" and thus distinct from such related constructs like coping, that are much more general operations occurring over more extended periods and behavioral emotion regulation strategies, which are those that involve specific behaviors aimed at changing emotion. Empirically, CERS has been associated with the expression of anxiety and depression. Gharamaleki and Azar (2025) CERS model, which is classified into the following two main structures: maladaptive strategies (self-blame, rumination, catastrophizing, and other-blame) and adaptive strategies (acceptance, positive refocusing, refocus on planning, putting into perspective, and positive reappraisal).

Previous studies looking into demographic factors such as gender and age and how they relate to the use of CERS have not been consistent in their findings, this is particularly true when looking at populations that have been affected by conflict. For instance in Western settings, some research has indicated that females are more likely to engage in rumination and catastrophizing while males might turn to self-blame yet other work has shown completely different patterns or has found no meaningful differences between genders at all (Balzarotti et al., 2016). A similar lack of clarity exists for age. While getting older is sometimes connected with a reduction in maladaptive strategies this pattern does not hold up consistently across various cultures (Growney, 2023). What is noticeably missing from the literature are studies on these differences in Middle Eastern populations who have experienced organized violence. In such contexts traditional gender roles and specific cultural norms may play a distinct role in shaping how individuals regulate their emotions (Jihad & Al-Qaisy, 2024) The current study was therefore designed to examine these differences in gender and age in the use of CERS among a sample of Iraqi ISIS survivors.

When there is a high degree of exposure to trauma, the application of cognitive strategies for emotional well-being becomes especially significant. For individuals who have endured the severe psychological and physical stressors associated with war or terrorism, there is a pronounced tendency to rely on maladaptive strategies such as rumination and catastrophizing, which extend psychological suffering and impede recovery. Conversely, adaptive cognitive strategies such as positive reappraisal and cognitive refocusing have been shown to serve as protective factors fostering resilience and better mental health outcomes (Ouhmad et al., 2023; Pejićić et al., 2018; Polizzi et al., 2024)

When there is a high degree of exposure to trauma, the application of cognitive strategies for emotional well-being becomes especially significant. For individuals who have endured the severe psychological and physical stressors associated with the ISIS occupation there is a pronounced tendency to rely on maladaptive strategies which often include rumination and catastrophizing. A good deal of research has demonstrated how these maladaptive approaches can extend psychological suffering and actively get in the way of recovery. In contrast, the capacity to effectively use adaptive cognitive strategies, things like positive reappraisal and cognitive refocusing can serve as a protective factor against psychopathology. These particular mechanisms are what have been associated with greater resilience and better mental health outcomes in traumatized individuals

The objectives of the current study were twofold. First, the study aimed to investigate specific profiles of strategies used in cognitive emotion regulation by Iraqi citizens who were directly exposed to terrorist violence. Second, the study addressed differences in whether the identified profiles are related to demographic variables in terms of age and gender. As a whole, the research effort will try to derive empirically based insights that can be instrumental for the development and implementation of targeted interventions aimed at ameliorating the psychological impact of stressful events on patients.

Method

Sample and Design

Employing a cross-sectional design, this study utilized a convenience sample of 420 adults aged 18 to 65. Participants were recruited from Mosul, Iraq, a city directly and severely impacted by the ISIS occupation. Among them, 61.5% were female and 39.5% were male, with an average age of 38 years (standard deviation = 13.24). There were no specific requirements for inclusion in the

sample beyond having lived in the region during the ISIS occupation and being of adult age.

Procedure

Participants were recruited from public spaces to mitigate selection bias associated with recruiting from a single source. After receiving a thorough explanation of the study, participants provided written informed consent. They then completed a 36-item questionnaire that assessed Cognitive Emotion Regulation. The study was approved by the Research Ethics Committee of the Faculty of Education for the Humanities at Kerbala University, Iraq, ensuring compliance with human subject research guidelines.

Instrument

The Cognitive Emotion Regulation Questionnaire Arabic Version (CERQ-AR) Looti (2024) was the instrument selected to evaluate participants' cognitive reactions to the ISIS invasion. This is a 36-item self-report measure, and it is made up of nine subscales: "self-blame, rumination, catastrophizing, other-blame, acceptance, positive refocusing, refocusing on planning, putting into perspective and positive reappraisal." Using a 5-point Likert scale, participants rated how frequently they experienced these thoughts. The version of the CERQ-AR used in this research is a translation from the original. A direct translation doesn't always capture cultural specifics, so a primary objective for this study was to establish the psychometric properties of the questionnaire within the unique Iraqi post-conflict setting. For this reason, the measure's reliability and validity were confirmed for this specific sample before moving on to the primary analyses.

Data Analysis

A confirmatory factor analysis (CFA) was performed on the Cognitive Emotion Regulation Questionnaire (CERQ-AR) using AMOS 28.0 with maximum likelihood estimation. To judge the model's fit, the criteria laid out by Hu and Bentler (1999) were used. This involved checking for a non-significant chi-square statistic ($p > .05$) or if it was significant, looking for acceptable values on the comparative fit index ($CFI > .90$), root-mean-square error of approximation ($RMSEA < .08$), and the standardized root-mean-square residual ($SRMR < .08$). Descriptive statistics were calculated for all nine CERQ-AR factors, specifically the mean, standard deviation skewness, and kurtosis. Pearson correlation coefficients were calculated in SPSS 28.0 to help evaluate the validity and reliability of the CERQ-AR. The correlations between the factors were also

checked for any potential multicollinearity issues. To look into gender differences in Cognitive Emotion Regulation scores, independent t-tests were run. The relationship between age and Cognitive Emotion Regulation was also explored through a correlational analysis.

Result

Confirmatory Factor Analysis (CFA): Data Completeness and Model Confirmation

There was no missing data in the dataset. To validate the nine-factor model established in the original study, a confirmatory factor analysis (CFA) was conducted on the study data using the maximum likelihood method. The results indicated a satisfactory model fit, as evidenced by the following fit indices: $\chi^2 = 1857$, $\chi^2/df = 3.332$, $p < .001$, $CFI = .90$, $RMSEA = .08$, $90\% CI SRMR = .069$. These indices suggest that the nine-factor structure of the CERQ-AR provides a good representation of the data from this Iraqi sample. The CFI of .90 indicates that the model fits the data well compared to a null model, and the RMSEA and SRMR values are within the acceptable range for an adequate fit. No items were removed during the analysis. Furthermore, correlations between the nine factors were examined and found to be moderate, suggesting the factors are related but distinct constructs, with no evidence of problematic multicollinearity.

Descriptive Analysis of: Cognitive Emotion Regulation Questionnaire Arabic Version (CERQ-AR)

A descriptive analysis showed that the CERQ-AR and its individual components followed a normal distribution (D'Agostino et al., 1990). The specific values are presented in Table 1.

Reliability

The internal consistency reliability of the Cognitive Emotion Regulation Questionnaire Arabic Version (CERQ-AR) was examined using Cronbach's alpha coefficient. For the subscales, the internal consistency was good to excellent. The alpha values were 0.90 for Self-blame, 0.80 for Acceptance, 0.77 for Rumination, 0.82 for Positive Refocusing 0.75 for Refocus on Planning, 0.85 for Positive Reappraisal, 0.86 for Putting into Perspective, 0.83 for Catastrophizing, and 0.83 for Other-blame. These findings suggest that the items that make up the CERQ-AR and its subscales are highly interrelated and reliably measure the constructs they are supposed to.

Factorial Validity

Table 2 shows the outcomes of an exploratory factor analysis (EFA) that was carried out on the CERQ-AR, using principal component analysis with a sample of 420 participants. The data were found to be suitable for factor analysis. This was indicated by the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy which was 0.793 and a significant Bartlett's test of sphericity ($\chi^2 = 7491.542$, $p < 0.001$). The factor loadings that resulted from the analysis ranged from 0.408 up to 0.834. Together these explained 66.7% of the total variance.

Table 1
Descriptive Statistics of The CERQ-AR

	Mean	Std. Deviation	Skewness	Kurtosis
Self-blame	11.188	3.247	0.230	-0.503
Acceptance	10.557	2.818	0.283	0.294
Rumination	6.800	2.432	0.954	0.693
Positive Refocusing	12.205	2.695	-0.261	-0.263
Refocus on Planning	8.057	2.936	0.657	0.434
Positive Reappraisal	9.300	3.318	0.399	-0.236
Putting into Perspective	10.979	3.187	0.120	-0.320
Catastrophizing	14.186	3.486	-0.477	-0.085
Other-blame	13.400	2.788	0.005	-0.268

Table 2
Exploratory Factor Analysis with Principal Component Analysis on Cognitive Emotion Regulation Questionnaire Arabic Version (CERQ-AR)

	F 1	F 2	F 3	F 4	F 5	F 6	F 7	F 8	F 9	Uniqueness
CERQ12	0.834									0.273
CERQ30	0.828									0.276
CERQ03	0.761									0.321
CERQ21	0.614			0.416						0.352
CERQ13	-0.407						0.575			0.458
CERQ23		0.815								0.311
CERQ32		0.810								0.264
CERQ14		0.771								0.225
CERQ05		0.660								0.389
CERQ08			0.809							0.324
CERQ26			0.764							0.301
CERQ17			0.658							0.274
CERQ35			0.566							0.306
CERQ24				0.696						0.316
CERQ33				0.645						0.258
CERQ06				0.619						0.368
CERQ15				0.578						0.384
CERQ09					0.819					0.225
CERQ18					0.789					0.304
CERQ36					0.726					0.246

Table 2

Exploratory Factor Analysis with Principal Component Analysis on Cognitive Emotion Regulation Questionnaire Arabic Version (CERQ-AR)

	F 1	F 2	F 3	F 4	F 5	F 6	F 7	F 8	F 9	Uniqueness
CERQ27					0.599					0.515
CERQ10						0.801				0.213
CERQ01						0.755				0.362
CERQ28						0.708				0.309
CERQ19						0.611				0.565
CERQ22							0.822			0.290
CERQ31							0.682			0.388
CERQ04							0.628			0.430
CERQ11								0.828		0.239
CERQ02								0.753		0.281
CERQ29								0.720		0.374
CERQ20								0.408		0.475
CERQ25									0.774	0.240
CERQ16									0.758	0.312
CERQ34									0.585	0.380
CERQ07									0.474	0.421

Note. Applied rotation method is oblimin.

Effects of Gender and Age on Cognitive Emotion Regulation

Independent t-tests revealed no significant differences between males and females on any of the adaptive factors of the CERQ-AR. However, males reported significantly higher scores on the maladaptive strategies of rumination ($t = 4.20 = -4.06$, $p < .001$), catastrophizing ($t = 4.20 = -3.36$, $p < .001$), and other-blame ($t = 4.20 = -4.68$, $p < .001$).

Correlational analyses showed that older participants reported lower scores on the maladaptive strategies of self-blame ($r = -0.27$, $p < .001$), rumination ($r = -0.097$, $p = .048$), and catastrophizing ($r = -0.097$, $p = .048$). However, older participants scored higher than younger participants on the maladaptive strategy of other-blame ($r = 0.095$, $p = .49$). There were no meaningful differences in the adaptive strategies based on age.

Table 3

Effects of Demographic Variables on Cognitive Emotion Regulation Strategies

	Gender				Age			
	Male (166)		Female (254)		t (420)	p	r w age	
	Mean	SD	Mean	SD				
Self-blame	11.23	3.39	11.15	3.15	-0.239	0.811	-0.274	0.001
Acceptance	10.62	2.95	10.51	2.72	-0.407	0.684	-0.066	0.177
Rumination	7.38	2.70	6.41	2.16	-4.061	< .001	-0.097	0.048
Positive	12.38	2.71	12.08	2.68	-1.112	0.267	0.063	0.195
Refocusing								
Refocus on	8.04	2.88	8.06	2.97	0.084	0.933	-0.092	0.051
Planning								
Positive	9.38	3.38	9.24	3.27	-0.397	0.692	-0.022	0.647
Reappraisal								
Putting into	11.11	3.40	10.89	3.04	-0.706	0.481	-0.026	0.597
Perspective								
Catastrophizing	14.88	3.27	13.72	3.55	-3.367	< .001	-0.097	0.047
Other-blame	14.16	3.64	12.89	2.77	-4.680	< .001	0.095	0.049

Discussion

Statistical analyses revealed significant gender differences in maladaptive cognitive emotion regulation strategies. Males were more likely to engage in rumination, catastrophizing, and other-blame compared to females. However, no significant gender differences were observed in adaptive strategies. These findings suggest that gender may play a role in the types of cognitive distortions and emotion regulation strategies individuals adopt.

The observed gender differences in cognitive emotion regulation strategies can be better understood within the socio-cultural context of Mosul. In traditional Iraqi society, where masculinity is closely tied to strength and emotional restraint, men are often discouraged from openly expressing vulnerability. This may drive them toward maladaptive strategies such as rumination, catastrophizing, and suppression. Conversely, women are more socially permitted to seek interpersonal support and express emotions, fostering adaptive strategies like reappraisal and problem-solving. Neuroimaging and cross-cultural studies support these distinctions: although men and women achieve similar reductions in negative affect through reappraisal, women show greater prefrontal activation during emotional regulation, indicating higher cognitive engagement (McRae et al., 2008). Likewise, recent findings highlight that sociocultural expectations intensify gender gaps in emotion regulation under chronic stress, with men in conflict-affected settings displaying greater reliance on avoidance and suppression (Kira et al., 2019; Liddell et al., 2024; Matud et al., 2016).

Age-related differences observed in this study also align with recent literature. Older adults tend to use fewer maladaptive strategies such as self-blame, rumination, and catastrophizing and rely more on adaptive forms like problem-solving, distraction, and reappraisal (Lohani & Isaacowitz, 2022; Trives et al., 2016). This shift likely reflects accumulated life experience, emotional maturity, and improved cognitive control. However, the greater use of other-blame among older participants may represent a culturally influenced protective response, externalizing distress toward uncontrollable sources such as political violence or ISIS, thereby reducing self-directed guilt (Dadfarnia et al., 2020; Ricciardi et al., 2022). While temporarily relieving, such externalization may impede long-term recovery if it prevents emotional processing. Overall, these findings underscore the intertwined effects of culture, gender, and age on emotion regulation, emphasizing the importance of culturally sensitive interventions for trauma survivors in post-conflict Iraq.

Generally, self-blame, rumination, and catastrophizing, being negative strategies of cognitive emotion regulation, mostly show a negative correlation with age. A general trend is observed: as people grow old, their tendency to indulge in self-blame or most ineffective ways of coping with the challenges thrown up by life tends to reduce. The development of an age-related decline in self-blame in adolescents who had experienced childhood neglect. As these participants grew older, they were less likely to blame themselves for past

experiences, which may suggest developmental change in this cognitive emotion regulation strategy (Tanzer et al., 2021).

A negative correlation is seen between age and rumination in cognitive emotion regulation strategies, with a general indication that the older one gets, the less he or she ruminates. The reason may be that more adaptive emotion regulation strategies develop through aging. In line with this, Grownay (2023) pointed out that people applying more strategies of the immersive-engagement nature and less the disengagement ones such as rumination are older in age; hence, it seems that there is a negative correlation with age and rumination.

Moreover, a negative correlation was shown in the cognitive strategy of catastrophizing in emotion regulation. This means that as a person gets older, they are less likely to engage in catastrophizing, which is an adaptive cognitive strategy where one tends to predict disastrous outcomes or view the situation much worse than it actually is. For example, (Khawar et al., 2023) found that Pakistani adolescents were disposed to use catastrophizing more than the older age groups, which sums up to a negative correlation between age and the strategy in question. This would then imply that the older people tend to develop more adaptive strategies with time.

On the other hand, in cognitive strategies that showed a relationship with age and other-blame, the correlation was positive. This means that older people might be more likely to blame others in coping with difficult situations. An example was the positive correlation between age and other-blame among students by (Dadfarnia et al., 2020) in which older individuals are more likely to use other-blame to assist in emotion regulation. Such a trend was particularly transparent in the prediction of depression, which is taken to underscore its maladaptive nature. Another study on the context of social networks concluded that age and other-blame are positively related, which suggests that, with age, an individual is more likely to increase their tendencies of pinning negative outcomes on others who live within their social environment as a means of dealing with conflict (Ricciardi et al., 2022).

Older survivors may use external attribution to cope with negative outcomes, such as the actions of ISIS. This in turn is a means to disengage themselves from the sense of personal responsibility regarding their suffering and perhaps a way that offers relief or even control. Yet, although other-blame might provide temporary respite, it might also go on to impede recovery by avoiding underlying emotional issues.

In younger survivors, there may be a larger proportion of catastrophizing due to lesser life experience and lack of coping skills. Such catastrophization may increase psychological distress by amplifying negative thoughts or emotions. As people mature and become more resilient, this behavior could be far less common. There may also be some individuals who will continue to engage in this way of dealing with distress even in later life.

Understanding of these age-related patterns is important for developing interventions that will support a survivor in the various stages of recovery. For example, intervention for older survivors may be focused on the challenging of maladaptive coping strategies. For younger survivors, it may involve coping skills and emotional regulation strategies in the prevention and mitigation of catastrophizing.

The invitation of ISIS to come to Mosul, Iraq, has deeply influenced the cognitive emotional regulation strategies of blame. On the other hand, a positive relationship between age and the ability to blame others reflects that, with an increase in their age, they might adopt blaming as an increasing coping strategy against stressful situations.

Study limitations include self-report bias, small sample size, and potential recruitment bias. Future studies on this area need to incorporate measures, semi-structured interviews, or observational methods while assessing for comorbid conditions to ensure generalizability and internal validity of the study. Longitudinal studies and also taking into consideration cultural factors could be pursued for more information concerning the role of cognitive emotion regulation strategies in the way people react to traumatic events. Addressing the limitations in the research, present researchers can help move toward a more comprehensive understanding of this complex relationship and suggest ways to develop more effective interventions.

Conclusion

In conclusion, this study showed that very significant gender differences appeared in maladaptive cognitive emotion regulation strategies: males use a higher level of rumination, catastrophizing, and other-blame compared to females. These differences can be well understood only when the cultural milieu of Mosul, which enforces traditional gender roles and hence emotional responses, is considered. Age also appears to be one of the variables associated with this kind of strategy adoption, as the older the person is, the less maladaptive strategies are used, although other-blame seems to increase. These results

suggest that a gender- and age-targeted intervention should be developed with respect to emotional regulation, especially in post-conflict settings like Mosul, where prolonged trauma has further molded these coping mechanisms.

These results also showed a distinct pattern in the strategies of cognitive distortion and emotion regulation in people living in Northern Iraq under the rule of ISIS. Such results suggest that the interplay between these underlies the severity of horror witnessed. However, limitations to this study include self-report bias, small sample size, and potential bias in the recruitment process. To overcome these limitations, future research needs to include a bigger sample and more diversified recruitment methods. This information will go a long way in designing interventions that are much better targeted and effective in regard to the cognitive functioning of the people in unstable regions.

References

Balzarotti, S., Biassoni, F., Villani, D., Prunas, A., & Velotti, P. (2016). Individual differences in cognitive emotion regulation: Implications for subjective and psychological well-being. *Journal of Happiness Studies*, 17, 125–143. <https://doi.org/10.1007/s10902-014-9587-3>

Behrendt, M., Vervliet, M., Rota, M., Adeyinka, S., Uzureau, O., Rasmussen, A., & Derluyn, I. (2023). A conceptual study on the relationship between daily stressors, stressful life events, and mental health in refugees using network analysis. *Frontiers in Psychology*, 14, 1134667.

Dadfarnia, M., Adibnia, F., Abadi, M., & Dorri, A. (2020). Incremental collusive fraud detection in large-scale online auction networks. *The Journal of Supercomputing*, 76(9), 7416–7437. <https://doi.org/10.1007/s11227-020-03170-9>

Demir, Z., Böge, K., Fan, Y., Hartling, C., Harb, M. R., Hahn, E., & Bajbouj, M. (2020). The role of emotion regulation as a mediator between early life stress and posttraumatic stress disorder, depression and anxiety in Syrian refugees. *Translational Psychiatry*, 10(1), 371. <https://doi.org/10.1038/s41398-020-01062-3>

Emery, L., Sorrell, A., & Miles, C. (2020). Age differences in negative, but not positive, rumination. *The Journals of Gerontology: Series B*, 75(1), 80–84. <https://doi.org/10.1093/geronb/gbz109>

Gharamaleki, Fatemeh Fekar & Azar, Zeinab Fathipour. (2025). Cross-cultural adaptation and validation of cognitive emotion regulation questionnaire:

A systematic review. *Front. Psychol*, 15(1494665).
<https://doi.org/10.3389/fpsyg.2024.1494665>

Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. *Review of General Psychology*, 2(3), 271–299.
<https://doi.org/10.1037/1089-2680.2.3.271>

Gross, J. J. (2015). Emotion regulation: Current status and future prospects. *Psychological Inquiry*, 26(1), 1–26.
<https://doi.org/10.1080/1047840X.2014.940781>

Growney, C. M., & English, T. (2023). Age and cognitive ability predict emotion regulation strategy use. *The Journals of Gerontology: Series B*, 78(6), 987–997. <https://doi.org/10.1093/geronb/gbad021>

Jelinek, L., Peth, J., Kriston, L., & Moritz, S. (2021). The role of cognitive emotion regulation in posttraumatic stress disorder. *British Journal of Clinical Psychology*, 60(1), 93–109. <https://doi.org/10.1111/bjcp.12275>

Jihad, S. J., & Al-Qaisy, L. M. (2024). Mental health and coping strategies among yezidi women survivors of ISIS captivity. *Journal of Affective Disorders*, 345, 128–135.

Khawar, R., Attia, S., Zulfqar, A., & Hussain, S. (2023). Self-regulation and cognitive emotion regulation among adolescents. *Pakistan Journal of Humanities and Social Sciences*, 11(2), 2047–2055.
<https://doi.org/10.52131/pjhss.2023.1102.0500>

Kira, I. A., Shuwiekh, H. A. M., Rice, K. G., & Ashby, J. S. (2019). Trauma, gender, and culture: A study of emotion regulation and psychological distress in the Middle East. *Journal of Contextual Behavioral Science*, 14, 94–104.

Lazarus, R. S. (1991). *Emotion and adaptation*. Oxford University Press.
<https://doi.org/10.1093/oso/9780195069945.001.0001>

Liddell, B. J., Bryant, R. A., & Williams, M. (2024). Gender, culture, and emotion regulation in trauma-exposed populations: A cross-cultural perspective. *Current Psychology*, 43, 5541–5556.

Lohani, M., & Isaacowitz, D. M. (2022). Age differences in emotion regulation: A meta-analytic review of reappraisal, suppression, and acceptance. *Emotion*, 22(6), 1271–1287.

Matud, M. P., García, M. C., & Fortes, D. (2016). Gender and emotional regulation: Differences in coping and well-being. *Personality and Individual Differences*, 99, 61–65.

McRae, K., Ochsner, K. N., Mauss, I. B., Gabrieli, J. J. D., & Gross, J. J. (2008). Gender differences in emotion regulation: An fMRI Study of cognitive reappraisal. *Group Processes & Intergroup Relations*, 11(2), 143–162. <https://doi.org/10.1177/1368430207088035>

Ouhmad, N., El-Hage, W., & Combalbert, N. (2023). Maladaptive cognitions and emotion regulation in posttraumatic stress disorder. *Neuropsychiatrie*, 37(2), 65–75. <https://doi.org/10.1007/s40211-022-00453-w>

Pejičić, M., Ristić, M., & Andđelković, V. (2018). The mediating effect of cognitive emotion regulation strategies in the relationship between perceived social support and resilience in postwar youth. *Journal of Community Psychology*, 46(4), 457–472. <https://doi.org/10.1002/jcop.21951>

Polizzi, C. P., Wachen, J. S., Straud, C. L., Mintz, J., Baier, A. L., Dondanville, K. A., Young-McCaughan, S., Litz, B. T., Yarvis, J. S., Peterson, A. L., Resick, P. A., & for the STRONG STAR Consortium. (2024). Exploring the associations of emotion regulation and trait resilience with the efficacy of cognitive processing therapy for active duty military personnel with PTSD. *Cognitive Therapy and Research*, 48(4), 676–686. <https://doi.org/10.1007/s10608-023-10457-7>

Ricarte Trives, J. J., Navarro Bravo, B., Latorre Postigo, J. M., Ros Segura, L., & Watkins, E. (2016). Age and gender differences in emotion regulation strategies: autobiographical memory, rumination, problem solving and distraction. *The Spanish Journal of Psychology*, 19, E43. <https://doi.org/10.1017/sjp.2016.46>

Ricciardi, C., Kornienko, O., & Garner, P. W. (2022). The role of cognitive emotion regulation for making and keeping friend and conflict networks. *Frontiers in Psychology*, 13(). <https://doi.org/10.3389/fpsyg.2022.802629>

Sheykhan, R., Ghazanfari, F., Jadidi, F., Adineh, M., & Sadrmohamadi, R. (2016). Attachment styles and cognitive emotion regulation strategies as predictor of post-traumatic stress disorder in veterans. *Journal of Mazandaran University of Medical Sciences*, 26(137), 95–104.

Tanzer, M., Salaminios, G., Morosan, L., Campbell, C., & Debbané, M. (2021). Self-blame mediates the link between childhood neglect experiences and

internalizing symptoms in low-risk adolescents. *Journal of Child & Adolescent Trauma*, 14, 73–83. <https://doi.org/10.1007/s40653-020-00307-z>

Trives, J. J., Navarro Bravo, B., Latorre Postigo, J. M., Ros Segura, L., & Watkins, E. (2016). Age and gender differences in emotion regulation strategies: autobiographical memory, rumination, problem solving and distraction. *The Spanish Journal of Psychology*, 19, E43.
<https://doi.org/10.1017/sjp.2016.46>