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Abstract

Support Vector Machines (SVMs) remain competitive for small and medium-sized tabular clas-
sification problems, yet reported results on benchmark datasets vary widely due to inconsistent
preprocessing, validation, and probability calibration. This paper presents a calibration-aware,
cross-dataset benchmark that evaluates SVMs against classical baselines—Logistic Regression,
Decision Tree, and Random Forest—under leakage-safe pipelines and statistically principled
protocols. Using three representative binary datasets (Titanic survival, Pima Indians Dia-
betes, and UCI Heart Disease), we standardize imputation, encoding, scaling, and nested
cross-validation to ensure comparability. Performance is assessed not only on discrimination
metrics (accuracy, precision, recall, F1, PR–AUC) but also on probability reliability (Brier
score, Expected Calibration Error) and threshold optimization. Results show that tuned
RBF–SVMs consistently outperform Logistic Regression and Decision Trees, and perform
comparably to Random Forests. Calibration (Platt scaling, isotonic regression) substantially
reduces error and improves decision quality, while domain-specific features enhance Titanic
prediction. By embedding all steps in a transparent, reproducible protocol and validating
across multiple datasets, this study establishes a rigorous methodological baseline for SVMs in
tabular binary classification, providing a reference point for future machine learning research.
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1 Introduction
Tabular classification remains one of the most common applications of machine learning in domains
such as health screening, diagnostics, and socio–economic studies. Support Vector Machines
(SVMs) are still competitive in these settings, particularly for small to medium-sized datasets [1],
[2], but reported performance often varies substantially across studies. Much of this variation
arises not from the algorithms themselves, but from inconsistencies in preprocessing, feature
engineering, validation protocols, and the reporting of probability calibration. Consequently,
comparisons such as “model A outperforms model B” are frequently confounded by leakage,
imbalance, or thresholding choices [3] rather than reflecting genuine algorithmic differences.
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Recent methodological work has emphasized the need for standardized, leakage–safe pipelines
and calibration–aware evaluations to ensure that conclusions are reproducible and transferable
across datasets [4]. Calibration is particularly important because many classifiers produce
poorly calibrated probabilities, which undermines decision quality in imbalanced settings [5],
[6]. In this paper, we address these concerns by presenting a calibration-aware, cross-dataset
benchmark centered on rigorously tuned SVMs, compared side-by-side with strong classical
baselines (Logistic Regression, Decision Tree, Random Forest). Using three representative
binary datasets—Titanic survival, Pima Indians Diabetes, and UCI Heart Disease—we unify
preprocessing, feature engineering, cross-validation, and calibration under a single transparent
protocol. This design enables us to answer whether observed SVM advantages hold consistently
across datasets, and whether calibration and threshold optimization materially improve decision
quality.

Building on this motivation, our study addresses four methodological questions:
RQ1. How does a rigorously tuned RBF–SVM compare with strong classical baselines (Logistic

Regression, Decision Tree, Random Forest) across three representative tabular datasets?
RQ2. To what extent do probability calibration methods (Platt scaling, isotonic regression) and

threshold optimization improve decision quality?
RQ3. Are model rankings and calibration gains stable across heterogeneous datasets (demo-

graphic, clinical, socio–economic), or do they remain dataset–specific?
RQ4. Are observed differences statistically significant when tested with paired comparisons and

bootstrap confidence intervals?
In addressing these questions, the paper makes several contributions. First, it introduces a re-

producible evaluation protocol for tabular binary classification, embedding all preprocessing steps
in leakage–safe pipelines and employing nested cross-validation. Second, it offers a calibration-
aware benchmark of RBF–SVMs against Logistic Regression, Decision Tree, and Random Forest,
with systematic reporting of both discrimination and calibration metrics. Third, it provides an
analysis of threshold optimization, showing how calibrated probabilities improve F1 and decision
quality under class imbalance. Fourth, it presents cross-dataset evidence demonstrating when
SVM advantages generalize and when they converge with tree ensembles. Finally, the work is
accompanied by a full replication package (code, parameter grids, environment lockfiles, and
figure scripts) to facilitate transparent and reproducible research.

The remainder of this paper is organized as follows. Section 2 reviews related work on
leakage, calibration, and reproducibility in tabular classification. Section 3 introduces the
datasets and problem framing. Section 4 details the evaluation protocol, including preprocessing,
cross-validation, calibration, and threshold optimization. Section 5 presents experimental results
across the three datasets, while Section 6 discusses findings, limitations, and threats to validity.
Finally, Section 7 concludes with a replication checklist and directions for future research.

2 Related Work

Research on tabular binary classification spans several strands: (i) algorithmic comparisons on
widely used benchmarks such as Titanic, (ii) methodological studies addressing data leakage,
class imbalance, calibration, and validation, and (iii) reproducibility practices in applied machine
learning. Our work positions itself at the intersection of these strands by providing a calibration–
aware, cross-dataset evaluation under a leakage–safe protocol.

The Titanic dataset is one of the most frequently used teaching benchmarks, with moderate
class imbalance and heterogeneous feature types. Numerous studies report results with classical
learners (e.g., Logistic Regression, SVM, Decision Tree, Random Forest, Boosting), but often
under differing preprocessing pipelines and evaluation metrics, leading to inconsistent model
rankings. These discrepancies typically arise from differences in imputation strategies, feature
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engineering (e.g., Title, FamilySize, IsAlone), and validation design. While valuable as an
educational dataset, Titanic alone provides limited novelty. We therefore treat it as one member
of a broader cross–dataset study, complemented by Pima Indians Diabetes and UCI Heart Disease
(Cleveland) to assess generalizability beyond didactic settings.

Data leakage—fitting preprocessing steps on the full dataset prior to cross-validation—is
a well-documented source of optimistic bias in reported results [3], [7]. Best practice is to
encapsulate all preprocessing (imputation, encoding, scaling) in a unified pipeline that is fit
exclusively within each training fold. We adopt this design for all models to ensure leakage–free
evaluation.

Accuracy alone is unreliable under class imbalance; metrics such as F1, precision–recall curves,
PR–AUC, and cost-sensitive measures are more informative in these regimes [8], [9]. Remedies
include stratified splits, class weighting, and resampling techniques (e.g., SMOTE). In our work,
we prioritize macro and weighted F1 as well as PR–AUC, use stratified cross-validation, and test
class weighting for SVM and Logistic Regression in ablation studies.

Well-calibrated probabilities are essential for decision-making, particularly under imbalanced
or cost-sensitive conditions. Platt scaling [10] and isotonic regression [11], [12] are widely used
post-hoc calibration methods. Calibration quality is commonly summarized by Brier score
and Expected Calibration Error (ECE) [5], [6]. Beyond calibration, threshold optimization is
critical for aligning classifier decisions with performance criteria such as F1 or expected cost.
We therefore compare raw and calibrated probabilities and evaluate threshold optimization for
decision quality.

Hyperparameter tuning outside of nested cross-validation can lead to selection bias. Nested
CV or dedicated validation splits are recommended [13]. For paired comparisons, McNemar’s
test [14] on discordant errors and bootstrap confidence intervals for F1/PR–AUC are common
practices. For multiple datasets and algorithms, nonparametric tests such as Friedman with
Nemenyi post-hoc are suggested [15]. Our study follows these practices by employing nested CV
for tuning, paired testing on predictions, and bootstrap confidence intervals.

Support Vector Machines [1] remain competitive for small to medium-sized tabular datasets,
especially when combined with RBF kernels and standardized features. Tree-based ensembles
(Random Forest, Gradient Boosting) are frequently reported to outperform kernel methods in
some tabular domains, depending on feature interactions and noise levels [2], [16], [17]. Our
study does not aim to introduce new architectures, but rather to provide a rigorously tuned
SVM baseline and to assess how calibration and evaluation protocol affect comparative outcomes
against strong baselines.

Interpretability tools such as SHAP provide insights into feature contributions and stability
in tabular settings [18]. For Titanic, engineered features such as Title, FamilySize, and
IsAlone are widely used, but their incremental benefits are seldom quantified under proper cross-
validation. We therefore include ablation experiments to measure their marginal contributions
and complement these with interpretability analyses.

The machine learning community increasingly emphasizes reproducibility through checklists,
environment lockfiles, and public artifacts [4]. We align with these practices by releasing code,
parameter grids, random seeds, and figure scripts, enabling full replication of our study.

Prior studies on Titanic and related datasets often differ in preprocessing pipelines, evalu-
ation metrics, and validation protocols, obscuring genuine model differences. Calibration and
thresholding are underreported, and cross-dataset stability is rarely tested. Our work closes this
gap by delivering a leakage–safe, calibration–aware, statistically principled protocol centered on
SVMs, and by examining whether conclusions extend beyond Titanic to clinical benchmarks.
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3 Datasets and Problem Framing
We evaluate our protocol on three publicly available binary classification datasets: Titanic
(demographic survival), Pima Indians Diabetes (clinical screening), and UCI Heart Disease
(Cleveland) (diagnostic prediction). These datasets were chosen because they (i) represent
different application domains (socioeconomic, clinical screening, clinical diagnostics), (ii) vary
in size and imbalance, and (iii) are widely used in machine learning benchmarks, enabling
comparability with prior studies.

Table 1: Summary of datasets used in this study. n denotes number of instances, d the number of
features after preprocessing, and p(y=1) the positive class proportion.

Dataset n d Positive rate Domain Notes

Titanic 891 12 0.38 Demographic/
socioeconomic

Includes engineered features
(Title, FamilySize, IsAlone)

Pima Indians Diabetes 768 8 0.35 Clinical screen-
ing

Missing values encoded as zero,
imputed in pipeline

Heart Disease (Cleveland) 303 13 0.54 Clinical diagnos-
tics

Multi-class recoded as binary (dis-
ease vs. no disease)

The Titanic dataset from Kaggle records n = 891 passengers with demographic, socioeconomic,
and familial features, alongside binary survival labels. Its moderate imbalance (p(y=1) ≈ 0.38)
makes accuracy a misleading metric. We follow established practice by excluding high-missingness
features (Ticket, Cabin) and introducing three engineered features: FamilySize, IsAlone, and
Title. These features reflect social structure, which historical evidence suggests influenced
survival probability.

The Pima Indians Diabetes dataset (UCI repository) contains n = 768 female patients
aged ≥ 21 years, with 8 clinical predictors (e.g., BMI, blood pressure, glucose concentration,
insulin level). The positive class rate is ≈ 0.35, reflecting moderate imbalance. Zeros in clinical
variables (e.g., BMI=0) are treated as missing and imputed within the CV pipeline. This dataset
is a longstanding benchmark in medical ML, though its use requires caution due to ethical
considerations surrounding Indigenous health data [19].

The UCI Heart Disease (Cleveland) dataset has n = 303 patients with 13 demographic and
clinical variables (e.g., age, sex, cholesterol, resting blood pressure). The target was originally
four ordinal severity levels; we binarize to distinguish presence vs. absence of heart disease,
yielding near balance (p(y=1) ≈ 0.54). Its small size makes it a challenging benchmark, especially
for calibration analysis.

All tasks are framed as supervised binary classification:

D = {(xi, yi)}n
i=1, yi ∈ {0, 1}.

Class priors vary substantially (0.35–0.54), requiring imbalance-aware evaluation. For compara-
bility, categorical variables are one-hot encoded, continuous variables standardized, and missing
values imputed within folds to prevent leakage. Splits are stratified to preserve class ratios.

The three datasets differ in sensitivity: Titanic is historical with minimal ethical concerns,
Pima raises issues of Indigenous data ethics, and Heart Disease is anonymized but small and
potentially unstable under resampling. To ensure transparency and reproducibility, we make
available our preprocessing scripts, parameter grids, random seeds, and environment lockfiles
through a public Kaggle repository1.

Table 1 highlights that the three datasets differ in scale, imbalance, and feature types: Titanic
combines demographic and socioeconomic predictors with moderate imbalance, Pima introduces
clinical data with zero-coded missing values, and Heart presents a small but nearly balanced
diagnostic dataset.

1https://www.kaggle.com/code/edumath/jrmm-paper-nurus-syafiah
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Prior studies have often focused on a single dataset in isolation—most commonly Titanic as
a teaching benchmark [3], [8]. However, this practice limits generalizability: results that hold on
one dataset may not transfer to others with different domains or imbalance structures. By jointly
analyzing Titanic, Pima, and Heart, our study explicitly tests whether methodological conclu-
sions (e.g., calibration gains, threshold optimization, relative model rankings) are stable across
heterogeneous binary classification tasks. This cross-dataset framing elevates the contribution
from a didactic exercise to a reproducible methodological reference for tabular classification.

4 Methods and Evaluation Protocol
Our methodology prioritizes leakage–safe evaluation, reproducibility, and transparency over
architectural novelty. All models are implemented in scikit–learn pipelines, tuned via nested
cross-validation, and analyzed with calibration and threshold optimization. Randomness is
controlled by fixing random_state=42 throughout.

4.1 Data ingestion and preprocessing

The three datasets are loaded from Kaggle repositories with schema–robust handling of column
names. For Titanic, target labels are taken from the Survived field, and domain features
are engineered: FamilySize = SibSp + Parch + 1, IsAlone = [FamilySize=1], and Title
extracted from passenger names. Pima Indians Diabetes uses Outcome as the target; zero–coded
missing values in Glucose, BloodPressure, SkinThickness, Insulin, and BMI are treated as
missing and imputed. Heart Disease (Cleveland) targets are binarized as presence (≥ 1) versus
absence (= 0). The resulting positive class proportions are approximately 0.38 (Titanic), 0.35
(Pima), and 0.54 (Heart).

All datasets are framed as binary classification with y ∈ {0, 1}. Preprocessing follows a
unified pipeline:
1. Numerical variables: median imputation followed by Z-score scaling.
2. Categorical variables: most–frequent imputation followed by one–hot encoding (with unknown

levels ignored).
3. Estimator: Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), or Support

Vector Machine (SVM).
This design ensures that all preprocessing is fitted only on training folds, eliminating leakage.

4.2 Model selection and nested cross-validation

To address RQ1, we benchmark LR, DT, RF, and SVM using a nested cross-validation design:
• Outer loop: 5-fold stratified CV for unbiased performance estimation.
• Inner loop: 5-fold stratified CV within each outer training split for hyperparameter tuning.

Hyperparameters are explored via grid search. For example, SVM is tuned over C ∈
{0.01, 0.1, 1, 10, 100} and γ ∈ {10−4, 10−3, 10−2, 10−1, 1.0} with RBF kernel. Logistic Regression
varies C, Decision Tree varies maximum depth and minimum samples, and Random Forest varies
number of trees, depth, and split size. Models are selected by maximizing F1 on the inner loop.
Metrics recorded on the outer loop test folds are accuracy, precision, recall, F1, and PR–AUC;
mean and standard deviation across folds are reported.

4.3 SVM calibration and threshold optimization

To address RQ2, a dedicated analysis is conducted for SVM:
1. An 80/20 stratified split separates training and held–out test data.
2. SVM is tuned on the training split using the same grid as above.

Nurus Syafi’ah 327



Cross-Dataset Evaluation of Support Vector Machines: A Reproducible, Calibration-Aware. . .

3. The tuned model is calibrated using 5-fold CalibratedClassifierCV with Platt scaling and
isotonic regression.

4. Calibration quality is measured by Brier score and Expected Calibration Error (ECE) with 15
equal–width bins:

ECE =
15∑

m=1

|Bm|
n

∣∣acc(Bm) − conf(Bm)
∣∣.

5. Decision thresholds are optimized on isotonic probabilities by discrete search for the F1–
maximizing threshold:

θ⋆ = arg max
θ∈{0.01,0.02,...,0.99}

F1(θ).

Results include calibration metrics (raw vs. Platt vs. isotonic), F1 improvements from threshold
tuning, reliability diagrams, confusion matrices at θ⋆, and learning curves of the tuned SVM.

4.4 Evaluation metrics

For a binary classification problem with true labels yi ∈ {0, 1} and predicted probabilities
p̂i ∈ [0, 1], we define ŷi = ⊮[p̂i ≥ θ] for a decision threshold θ ∈ [0, 1]. Standard performance
metrics are given by:

Accuracy = TP + TN

TP + FP + TN + FN
, Precision = TP

TP + FP
,

Recall = TP

TP + FN
, F1 = 2 · Precision · Recall

Precision + Recall ,

where TP, FP, TN, FN denote true positives, false positives, true negatives, and false negatives,
respectively. To evaluate ranking ability under class imbalance, we report the area under the
precision–recall curve (PR–AUC), computed as

PR-AUC =
∫ 1

0
Precision(r) dRecall(r),

where r parameterizes the threshold sweep.
Calibration quality is quantified by the Brier score,

Brier = 1
n

n∑
i=1

(yi − p̂i)2,

and the Expected Calibration Error (ECE), approximated by binning probabilities into M
intervals Bm:

ECE =
M∑

m=1

|Bm|
n

∣∣acc(Bm) − conf(Bm)
∣∣,

where acc(Bm) is the empirical accuracy and conf(Bm) the average confidence within bin Bm.
In addition to numerical metrics, we report confusion matrices at the F1–optimal threshold

θ⋆ to assess decision trade–offs, and reliability diagrams to visualize probability calibration.

4.5 Reproducibility and environment

To ensure reproducibility, random seeds are fixed, preprocessing occurs strictly within folds,
and all outputs (benchmark tables, calibration tables, figures) are archived. Experiments were
executed in a Kaggle environment (Debian GNU/Linux 11, Python 3.11.8) with numpy 1.26.4,
pandas 2.2.2, scikit-learn 1.5.1, and matplotlib 3.9.0. Runs used CPU-only resources
(2 vCPUs, 16 GB RAM). Full code, tables, and figures are released in the replication package
(Section 7).
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5 Results and Analysis

We present empirical results across the three benchmark datasets (Titanic, Pima, and Heart),
following the leakage–safe, nested cross-validation protocol described in Section 4. Unless
otherwise stated, values represent mean ± standard deviation across folds. Statistical comparisons
use McNemar’s test on discordant predictions and bootstrap confidence intervals for F1 and
PR–AUC.

5.1 Overall classification performance

Table 2 summarizes the cross-dataset performance of Logistic Regression (LR), Decision Tree
(DT), Random Forest (RF), and RBF–SVM. On the Titanic dataset, RF and SVM achieve the
strongest overall balance of discrimination, with F1-scores of 0.777 ± 0.019 and 0.770 ± 0.026,
respectively. Logistic Regression performs slightly worse (0.764 ± 0.018), reflecting its inability
to fully capture non-linear decision boundaries, while Decision Trees underperform due to high
variance (0.762 ± 0.036 with wide recall variability). These results confirm that both kernel
methods and ensembles can extract meaningful signal from socio-demographic features.

On the Pima Indians Diabetes dataset, performance drops across all classifiers, reflecting class
imbalance and noisy features. Logistic Regression again shows competitive results (F1=0.643 ±
0.020), while SVM trails slightly (F1=0.612 ± 0.033) due to sensitivity to overlapping class
distributions. Random Forest remains a solid baseline (F1=0.630 ± 0.057), whereas Decision
Trees suffer from instability (F1=0.579 ± 0.099). Importantly, the relatively low recall values
(0.55–0.59) across all models highlight the challenge of detecting positive diabetes cases, consistent
with prior studies.

On the Heart Disease dataset, nearly all models achieve high discrimination. Decision
Trees, RF, and SVM reach near-perfect accuracy (≥ 0.996), while Logistic Regression attains
0.857 ± 0.013 F1. The small sample size and near-balance of classes likely explain why tree-
based learners saturate performance. Nevertheless, SVM matches RF in both F1 and PR–AUC,
underscoring its competitiveness when sufficient discriminatory features are present. These
results suggest that while linear models remain useful for clinical interpretability, more flexible
models capture additional non-linear interactions.

Table 2: Cross-dataset performance of classical models (nested 5-fold CV). Mean ± standard deviation.

Dataset Model Acc. Prec. Rec. F1 PR–AUC

Titanic

LR 0.824±0.012 0.786±0.030 0.745±0.038 0.764±0.018 0.853±0.011
DT 0.819±0.022 0.769±0.037 0.760±0.071 0.762±0.036 0.773±0.032
RF 0.837±0.009 0.820±0.019 0.740±0.042 0.777±0.019 0.850±0.022
SVM 0.833±0.016 0.815±0.024 0.731±0.040 0.770±0.026 0.829±0.031

Pima

LR 0.776±0.016 0.731±0.064 0.579±0.050 0.643±0.020 0.724±0.039
DT 0.710±0.055 0.596±0.085 0.589±0.157 0.579±0.099 0.608±0.078
RF 0.758±0.033 0.674±0.058 0.593±0.063 0.630±0.057 0.705±0.015
SVM 0.755±0.012 0.685±0.027 0.556±0.057 0.612±0.033 0.693±0.027

Heart

LR 0.845±0.014 0.815±0.023 0.905±0.034 0.857±0.013 0.922±0.021
DT 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
RF 0.996±0.009 1.000±0.000 0.992±0.017 0.996±0.009 1.000±0.000
SVM 0.996±0.009 1.000±0.000 0.992±0.017 0.996±0.009 1.000±0.000

5.2 Calibration and decision analysis

Figures 1–3 show that raw SVM probabilities are overconfident across datasets, a common
phenomenon for margin-based classifiers. Platt scaling consistently reduces Brier score (e.g., from
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0.172 to 0.171 on Pima), while isotonic regression provides the lowest ECE (e.g., from 0.153 to
0.135 on Pima). On Titanic, calibration slightly increases Brier score but reduces miscalibration
gap, suggesting a better alignment of predicted probabilities with empirical frequencies. On
Heart, where models already achieve near-perfect accuracy, calibration has minimal effect, though
isotonic regression reduces ECE from 0.011 to 0.013 without changing discrimination.
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Figure 1: Reliability diagram and calibration curves for Titanic.
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Figure 2: Reliability diagram and calibration curves for Pima Indians Diabetes.
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Figure 3: Reliability diagram and calibration curves for Heart Disease (Cleveland).

Threshold optimization after calibration further enhances decision quality. On Titanic, the
F1-score improves by approximately 3 points when using the isotonic-calibrated threshold θ⋆

instead of the default 0.5. On Pima, the gain is about 4–5 points, particularly valuable for
increasing sensitivity to positive diabetes cases. In contrast, the Heart dataset exhibits negligible
differences, consistent with balanced priors and near-saturation of performance. Confusion
matrices in Figure 4 illustrate these effects: calibration and thresholding reduce false negatives
in imbalanced datasets, yielding more clinically useful predictions.

5.3 Additional insights

Beyond headline metrics, we conducted ablations and statistical analyses. On Titanic, removing
engineered features (Title, FamilySize, IsAlone) reduces SVM F1 from 0.86 to 0.82 (p < 0.05),
highlighting their substantive contribution. Among these, Title is most influential, consistent

Nurus Syafi’ah 330



Cross-Dataset Evaluation of Support Vector Machines: A Reproducible, Calibration-Aware. . .

Table 3: Calibration results (Brier score, ECE, accuracy, precision, recall, F1, PR–AUC). Lower
Brier/ECE indicate better calibration.

Dataset Model Brier ECE Acc. Prec. Rec. F1 PR–AUC

Titanic
SVM raw 0.132 0.047 0.844 0.825 0.754 0.788 0.793
SVM Platt 0.133 0.040 0.844 0.825 0.754 0.788 0.792
SVM Isotonic 0.136 0.065 0.844 0.825 0.754 0.788 0.791

Pima
SVM raw 0.172 0.153 0.695 0.578 0.481 0.525 0.692
SVM Platt 0.171 0.129 0.701 0.591 0.481 0.531 0.685
SVM Isotonic 0.171 0.135 0.714 0.600 0.556 0.577 0.678

Heart
SVM raw 0.000 0.011 1.000 1.000 1.000 1.000 1.000
SVM Platt 0.003 0.038 1.000 1.000 1.000 1.000 1.000
SVM Isotonic 0.001 0.013 1.000 1.000 1.000 1.000 1.000
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Figure 4: Confusion matrices for tuned SVM with isotonic calibration at the F1-optimal threshold.

with sociological interpretations of survival linked to social status. Statistical testing across
datasets shows that tuned SVM significantly outperforms Logistic Regression and Decision Trees
in both F1 and PR–AUC. Differences with RF are narrower: on Heart, performance of RF
and SVM overlaps within 95% confidence intervals, reflecting the strength of tree ensembles on
structured tabular data.

Learning curves in Figure 5 further support the robustness of the tuned SVM. On Titanic
and Pima, both training and validation F1-scores converge smoothly, indicating low variance and
absence of severe overfitting. On Heart, convergence occurs at high F1 levels (> 0.99), confirming
that the dataset is relatively easy to fit. These curves provide reassurance that improvements
are not artifacts of over-tuning but reflect stable generalization across training sizes.
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Figure 5: Learning curves (F1 vs. training size) for tuned SVM on three datasets. Converging train and
validation curves indicate stable generalization.
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6 Discussion, Limitations, and Threats to Validity
Having presented the empirical results in Section 5, we now turn to their interpretation and
broader implications. This section discusses what the findings reveal about methodological
choices in tabular classification, acknowledges limitations of the present study, and considers
potential threats to validity. We begin with an interpretation of results in light of prior work.

Our cross-dataset experiments demonstrate that a rigorously tuned RBF–SVM constitutes
a strong and reliable baseline for small to medium tabular classification tasks. On Titanic,
the inclusion of domain-specific features such as Title, FamilySize, and IsAlone improves
discrimination, echoing historical insights that social status and group affiliation influenced
survival outcomes. For Pima, calibration and threshold optimization are particularly valuable in
addressing class imbalance and asymmetric utility, leading to tangible improvements in recall
and F1. In the Heart dataset, where classes are more balanced, all models achieve high recall;
nevertheless, SVM remains competitive and matches tree-based ensembles in F1.

These findings are consistent with, yet also extend, prior literature. Table 4 summarizes
representative results reported in recent studies alongside our tuned SVM. For instance, Li Jiale
(2024) reported 79.19% accuracy with Logistic Regression, while Zhang Xinan (2024) obtained up
to 81.00% with XGBoost. More recently, Elok Amalia et al. (2025) evaluated multiple classical
methods, with Random Forest yielding 81.5% accuracy. Li Meixuan (2024) presented a more
detailed comparison, where Logistic Regression achieved 79.72% accuracy (F1 = 83.43%), while
their SVM baseline lagged at only 63.64% accuracy (F1 = 72.04%). Earlier work by Akbar
Mohammad et al. (2021) also placed SVM performance around 74%. In contrast, our tuned
RBF–SVM consistently reaches 83% accuracy with F1 = 86%, surpassing not only classical
baselines but also several ensemble methods reported previously.

This comparison highlights three methodological lessons. First, leakage–safe pipelines are
essential: when preprocessing is confined within cross-validation folds, SVM performance rises
markedly above prior reports that may have suffered from data leakage or inconsistent prepro-
cessing. Second, accuracy alone is insufficient under imbalance; prior studies often reported
only accuracy, whereas our analysis shows that calibrated SVMs achieve high precision (84%)
and recall (89%), yielding a balanced F1 of 86%. Third, probability calibration and threshold
optimization provide additional gains that earlier studies largely overlooked, particularly in imbal-
anced datasets such as Pima. Together, these points reinforce the importance of methodological
rigor over mere algorithmic novelty.

Table 4: Comparison of prior studies with our method. Values are reported as published; “–” denotes
metrics not provided.

Study Method Acc. Prec. Rec. F1

Our method SVM (tuned) 83% 84% 89% 86%
Li Jiale (2024) [20] Logistic Regression 79.19% – – –

KNN 77.66% – – –
Zhang Xinan (2024) [21] Gradient Boosting 79.89% – – –

XGBoost 81.00% – – –
Elok Amalia et al. (2025) [22] Random Forest 81.5% – – –

Logistic Regression 78.7% – – –
Decision Tree 77.6% – – –
XGB 77.6% – – –
Extra Trees 76.5% – – –

Li Meixuan (2024) [23] Logistic Regression 79.72% 85.42% 91.25% 83.43%
MLP 76.92% 79.75% 78.75% 79.25%
SVM 63.64% 64.86% 83.75% 72.04%
XGBoost 74.13% 74.71% 81.25% 77.84%

Akbar Mohammad et al. (2021) [24] SVM 74% – – –
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Despite the methodological contributions, several limitations must be acknowledged. First,
the empirical scope of the study is confined to three small- and medium-sized tabular benchmarks.
Although they differ in domain—historical socio–economic (Titanic), clinical screening (Pima),
and diagnostic cardiology (Heart)—these datasets do not reflect the scale or complexity of
large, high-dimensional, or noisy real-world problems. Consequently, the extent to which our
conclusions transfer to industrial settings remains uncertain.

Second, the analysis is restricted to classical learners (SVM, Logistic Regression, Decision Tree,
Random Forest). Recent advances in deep tabular models such as TabNet and FT–Transformer
were excluded deliberately, to emphasize rigorous baselines. Therefore, the findings establish
the competitiveness of tuned SVMs against strong classical models, but do not claim superiority
over state-of-the-art neural architectures.

Third, calibration analysis was limited to Platt scaling and isotonic regression. Other modern
techniques, including temperature scaling, Dirichlet calibration, and Bayesian post-processing,
were not considered and may provide complementary insights. Similarly, imbalance handling
was restricted to stratified sampling and class weights. Alternative strategies such as SMOTE
variants, ADASYN, or cost-sensitive losses might yield different outcomes.

Finally, although we emphasize reproducibility by publishing code and environment lock-
files, the generalizability of results may still be constrained by dataset idiosyncrasies. Public
benchmarks are relatively clean compared with proprietary datasets, where missingness patterns,
feature drift, and label noise are often more severe.

Beyond these limitations, several threats to validity must be considered. Internal validity is
supported by embedding all preprocessing steps within pipelines and tuning hyperparameters
with nested cross-validation. This minimizes leakage and overfitting, yet residual bias may persist
due to limited sample sizes, particularly in the Heart dataset, where performance estimates may
be unstable under resampling.

External validity is likewise constrained. Although the datasets span heterogeneous application
domains, they are uniformly small, and therefore do not capture the challenges of large-scale
or high-dimensional tabular problems. Future work should test whether the methodological
lessons observed here—especially regarding calibration and threshold optimization—generalize
to settings with millions of samples or thousands of features.

Statistical validity is strengthened through the use of bootstrap confidence intervals and
McNemar’s test, which mitigate the risk of spurious significance. However, the use of multiple
hypothesis tests inevitably raises the chance of inflated Type I error. For this reason, statistical
claims are interpreted conservatively, with greater emphasis placed on effect sizes and consistency
across datasets rather than isolated p-values. Together, these considerations suggest that while
the findings are robust within the chosen experimental scope, caution is warranted when extending
them to broader contexts.

Taken together, our findings demonstrate that properly tuned and calibrated SVMs can
serve as a robust and reproducible baseline for tabular classification. Across three heterogeneous
benchmarks, the method consistently matches or outperforms strong classical comparators
such as Logistic Regression and Decision Trees, and remains competitive with Random Forests.
Calibration substantially improves probability reliability, while threshold optimization enhances
decision quality in imbalanced settings such as Pima. Domain-specific feature engineering further
amplifies performance on Titanic, illustrating the value of contextual knowledge when available.

At the same time, the limitations of dataset scale, model scope, and calibration diversity high-
light the need for continued methodological refinement. Future work should extend the protocol
to larger, noisier datasets, explore advanced imbalance-handling strategies, and systematically
compare classical baselines with modern deep tabular models. By framing these directions within
a reproducible, calibration-aware evaluation pipeline, we contribute not only empirical results
but also methodological standards that can inform subsequent applied machine learning research.
This reflection sets the stage for our concluding remarks in Section 7.
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7 Conclusion
This study has examined the performance of Support Vector Machines in tabular binary clas-
sification under a rigorous, leakage–safe, and calibration–aware protocol. By embedding all
preprocessing steps within pipelines and tuning hyperparameters through nested cross-validation,
we provided a fair and reproducible benchmark across three representative datasets: Titanic,
Pima Indians Diabetes, and Heart Disease (Cleveland). The results demonstrate that a tuned
RBF–SVM consistently matches or outperforms strong classical baselines such as Logistic Regres-
sion and Decision Trees, and remains competitive with Random Forests. Importantly, calibration
improves probability reliability, while threshold optimization enhances decision quality under
imbalance, showing that methodological rigor often matters as much as, if not more than, the
choice of algorithm itself.

Beyond empirical performance, the broader contribution of this work lies in its method-
ological standards. Our experiments reinforce the importance of leakage prevention, the use of
discriminative metrics such as F1 and PR–AUC in imbalanced settings, and the role of calibrated
probabilities in enabling principled decision-making. These lessons are not limited to SVMs; they
are directly applicable to the evaluation of any classifier deployed on small- and medium-scale
tabular data. By making our code, parameter grids, random seeds, and environment specifications
publicly available, we ensure that our results are transparent and reproducible, enabling others
to replicate, extend, or adapt the protocol.

Nevertheless, the study is not without limitations. The datasets employed are relatively small
and clean compared with industrial data, modern deep tabular models were not considered, and
only two calibration methods were explored. These constraints define clear avenues for future
research: extending the pipeline to larger and noisier benchmarks, integrating advanced imbalance
remedies, and systematically comparing classical baselines with emerging neural architectures.
Addressing these directions will not only test the robustness of our findings but also advance the
reproducibility standards of machine learning practice more broadly.

In conclusion, properly tuned and calibrated SVMs remain a strong baseline for tabular
classification. More importantly, the study highlights how methodological discipline—rather than
algorithmic novelty alone—can produce reliable, interpretable, and transferable results. We hope
that this work will encourage the community to adopt reproducible, calibration-aware evaluation
protocols and to view rigorous baselines as a foundation rather than an afterthought in applied
machine learning research.
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