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Abstrak

Algoritma RSA adalah salah satu algoritma kriptografi kunci publik yang paling banyak
digunakan karena keamanannya didasarkan pada sulitnya memfaktorkan bilangan bulat
besar. Salah satu tahapan penting dalam algoritma RSA adalah pembangkitan kunci privat,
yang secara matematis melibatkan penyelesaian persamaan bilangan bulat. Penelitian ini
bertujuan untuk menjelaskan secara formal bahwa proses tersebut dapat dirumuskan sebagai
persoalan persamaan Diophantine linear. Metode yang digunakan meliputi transformasi
persamaan kongruensi menjadi bentuk persamaan linear dua variabel dan penyelesaiannya
menggunakan algoritma Euclid yang diperluas. Studi kasus dilakukan dengan memilih dua
bilangan prima besar dan nilai kunci publik tertentu. Hasilnya menunjukkan bahwa nilai
kunci privat sebesar 1197031 dapat diperoleh dari penyelesaian persamaan Diophantine dan
berhasil digunakan untuk mendekripsi pesan menjadi teks semula secara tepat. Penelitian ini
menunjukkan bahwa struktur matematis dari algoritma RSA dapat dijelaskan sepenuhnya
melalui pendekatan teori bilangan, sehingga memperkuat pemahaman konseptual terhadap
algoritma tersebut.

Kata Kunci: Algoritma Euclid; Algoritma RSA; Kriptografi; Persamaan Diophantine Linear;
Teori Bilangan

Abstract

The RSA algorithm is one of the most widely used public-key cryptographic algorithms due
to its security, which is based on the difficulty of factoring large integers. One of the crucial
steps in this algorithm is the generation of the private key, which mathematically involves
solving an integer equation. This study aims to formally demonstrate that this process can
be formulated as a linear Diophantine equation problem. The method involves transforming
a congruence equation into a two-variable linear equation and solving it using the extended
Euclidean algorithm. A case study is conducted by selecting two large prime numbers and
a specific public key value. The results show that a private key value of 1197031 can be
obtained from the solution of the Diophantine equation and successfully used to decrypt the
message back into its original text. These findings indicate that the mathematical structure
of the RSA algorithm can be fully explained through an elementary number theory approach,
thereby enhancing conceptual understanding of the algorithm.
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1 Pendahuluan
Perkembangan teknologi dan informasi di era modern sangatlah pesat, sehingga menuntut adanya
sistem keamanan digital yang kuat dan andal [1]. Dalam konteks ini, kriptografi memiliki peran
penting sebagai basis utama dalam menjaga kerahasiaan, integritas, dan autentikasi data [2].
Beberapa algoritma kriptografi kunci publik yang paling banyak digunakan hingga saat ini adalah
algoritma RSA, yang dasar keamanannya terdapat pada sukarnya memfaktorkan bilangan bulat
besar menjadi faktor-faktor prima [3].

Algoritma RSA tidak hanya dikenal karena kekuatan keamanannya, tetapi juga karena
keterkaitannya yang erat dengan struktur-struktur matematika klasik, khususnya dalam teori
bilangan. Salah satu tahap penting dalam algoritma RSA adalah pembangkitan kunci privatnya,
yang secara teoritis melibatkan penyelesaian persamaan bilangan bulat. Masalah ini termasuk
dalam ranah persamaan Diophantine linear, yaitu persamaan yang penyelesaiannya berada pada
himpunan bilangan bulat untuk koefisien yang juga merupakan bilangan bulat [4].

Persamaan Diophantine linear merupakan salah satu tema mendasar dalam teori bilangan
dan banyak diaplikasikan dalam bidang kriptografi [5]. Sejumlah penelitian telah menunjukkan
peran penting persamaan ini dalam pengembangan sistem kriptografi modern, termasuk dalam
pembentukan sistem kunci algoritma RSA yang aman dan efisien [6]. Selain itu, penyelesaian
persamaan Diophantine linear umumnya dilakukan menggunakan algoritma Euclid atau algoritma
Euclid yang diperluas, yang memungkinkan pencarian solusi bilangan bulat lebih efisien [7].

Meskipun pemanfaatan persamaan Diophantine linear dalam algoritma RSA telah menjadi
bagian dari penjelasan standar dalam teori kriptografi, masih sedikit pengamatan secara eksplisit
dan formal menjelaskan bagaimana struktur persamaan Diophantine secara matematis berperan
dalam membangkitkan kunci privat pada algoritma RSA. Penelitian ini bertujuan mengisi
kesenjangan tersebut dengan menyajikan kajian teoritis yang memformulasikan secara eksplisit
penyelesaian persamaan Diophantine linear dalam konteks algoritma RSA.

Penelitian ini bertujuan untuk menjelaskan secara formal bagaimana persamaan Diophantine
linear digunakan dalam proses pembangkitan kunci privat pada algoritma RSA, serta mengekspos
bahwa struktur matematis dari algoritma RSA dapat dijelaskan secara menyeluruh melalui
pendekatan teori bilangan elementer. Kajian ini diharapkan dapat memberikan kontribusi
terhadap pemahaman konsep dasar dari algoritma RSA, serta menekankan pentingnya basis
matematis dalam pengembangan suatu algoritma kriptografi.

Kontribusi orisinal dari penelitian ini terdapat pada penekanan bagian formalisasi matematika
dari pembangkitan kunci algoritma RSA, yang secara eksplisit diformulasikan sebagai persoalan
penyelesaian persamaan Diophantine linear.

2 Konsep Dasar
Untuk menjabarkan bagaimana persamaan Diophantine linear digunakan dalam pembangkitan
kunci privat dalam algoritma RSA, bagian ini akan mengulas konsep-konsep dasar yang relevan.
Kajian dimulai dari prinsip kriptografi kunci publik, mekanisme kerja algoritma RSA, hingga
teknik penyelesaian persamaan bilangan bulat. Pemahaman terhadap konsep-konsep ini sangat
penting sebagai landasan untuk memahami bagian formal dalam hasil utama.

2.1 Algoritma RSA

Algoritma RSA merupakan algoritma kriptografi kunci publik yang diciptakan oleh tiga orang
peneliti asal Massachusetts Institute of Technology pada tahun 1976 yaitu Ron Rivest, Adi Shamir
dan Leonard Adleman [8].
Proses dasar algoritma RSA [9]:

1. Memilih dua buah bilangan prima yang berbeda p dan q.
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2. Menghitung n = p · q.
3. Menghitung fungsi totient Euler: ϕ(n) = (p − 1)(q − 1).
4. Memilih bilangan bulat e yang berada dalam interval tutup (1, ϕ(n)), dengan FPB(e, ϕ(n)) =

1.
5. Menentukan d sebagai invers modulo dari e terhadap ϕ(n), sehingga e · d ≡ 1 (mod ϕ(n)).
6. kunci publik = (n, e) dan kunci privat = (n, d).
7. Fungsi enkripsi c = Ee(m) = me (mod n).
8. Fungsi Dekripsi m = Dd(c) = cd (mod n).

2.2 Formulasi Algoritma RSA

Algoritma RSA merupakan algoritma kriptografi yang berlandaskan pada teorema Euler yang
dinyatakan bahwa [10]:

aϕ(n) ≡ 1 (mod n) (1)

dengan syarat:
1. a harus relatif prima terhadap n.
2. Fungsi ϕ(n) adalah fungsi totient Euler yang menentukan berapa banyak bilangan bulat

positif yang lebih kecil dari n dan relatif prima terhadap n. Fungsi ini didefinisikan sebagai
berikut:

ϕ(n) = n(1 − 1
p1

)(1 − 1
p2

)...(1 − 1
pr

)

dengan p1, p2, ..., pr adalah faktor-faktor prima dari n.
Berdasarkan sifat kekongruenan, jika a ≡ b (mod n), maka ak = bk (mod n) untuk setiap
bilangan bulat positif k. Maka Persamaan (1) dapat ditulis ulang sebagai:

ak·ϕ(n) ≡ 1k (mod n) atau ak·ϕ(n) ≡ 1 (mod n) (2)

Selanjutnya, jika a diganti dengan plainteks m, maka diperoleh:

mk·ϕ(n) ≡ 1 (mod n) (3)

Dengan menggunakan sifat kekongruenan lainnya, yakni jika a ≡ b (mod n), maka ac ≡
bc (mod n), apabila persamaan (3) dikali m maka:

mk·ϕ(n)+1 ≡ m (mod n) (4)

Misalkan terdapat dua bilangan bulat e dan d yang memenuhi:

e · d ≡ 1 (mod ϕ(n)) (5)

atau dapat ditulis dalam bentuk persamaan:

e · d = k · ϕ(n) + 1 (6)

Jika nilai k · ϕ(n) + 1 disubstitusikan ke pangkat pada persamaan (4), maka didapatkan:

me·d ≡ m (mod n) (7)

Persamaan (7) dapat ditulis kembali menjadi:

(me)d ≡ m (mod n) (8)
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Persamaan (8) berarti bahwa plainteks m yang dipangkatkan dengan e, lalu hasilnya dipangkatkan
lagi dengan d, akan menghasilkan ulang plainteks m. Berdasarkan persamaan (8), fungsi enkripsi
dan dekripsi dapat diformulasikan sebagai berikut:

Fungsi enkripsi: c = Ee(m) = me (mod n) (9)

Fungsi dekripsi: m = Dd(c) = cd (mod n) (10)
Karena md (mod n) = (m + jn)d (mod n) untuk sebarang bilangan bulat j, maka setiap
plainteks {m, (m + n), (m + 2n), ...} akan menghasilkan cipherteks yang sama. Dengan kata lain,
transformasinya dari banyak ke satu. Agar transformasinya bijektif, maka m harus dibatasi pada
interval [1, n − 1].

2.3 Persamaan Diophantine Linear

Persamaan Diophantine adalah sembarang persamaan yang memiliki satu atau lebih variabel
yang solusinya merupakan bilangan bulat [11]. Dalam konteks algoritma RSA, bentuk yang
digunakan adalah persamaan Diophantine linear dua variabel yang memiliki bentuk umum
sebagai berikut:

Ax + By = C (11)
dengan A, B, C ∈ Z dan x, y ∈ Z adalah solusi.
Teorema. Persamaan Diophantine linear Ax + By = C memiliki penyelesaian bilangan bulat
jika FPB(A, B) | C.
Bukti. Misalkan FPB(A, B) = w. Maka secara definisi berlaku w | A danw | B. Dengan
demikian, terdapat bilangan bulat u dan v sehingga:

A = uw (12)

B = vw (13)
Jika persamaan (12) dikalikan dengan x maka:

Ax = uwx (14)

demikian pula, jika persamaan (13) dikalikan dengan y, diperoleh:

By = vwy (15)

Menjumlahkan persamaan (14) dan (15) diperoleh:

Ax + By = (ux + vy)w (16)

Sementara itu, bentuk umum persamaan Diophantine linear Ax + By = C. Berdasarkan
persamaan (16) dapat disimpulkan bahwa:

C = (ux + vy)w (17)

Karena (ux + vy) adalah bilangan bulat, maka persamaan (17) memenuhi definisi keterbagian.
Dengan kata lain, w | C atau FPB(A, B) | C ■.

2.4 Invers Modulo

Invers modulo dari suatu bilangan a terhadap modulo m adalah bilangan bulat x yang memenuhi
[12]:

a · x ≡ 1 (mod n) (18)
Invers modulo memiliki solusi jika dan hanya jika FPB(a, m) = 1 [13]. Dalam konteks algoritma
RSA invers modulo sangat penting karena digunakan untuk menentukan nilai dari kunci privat d
dari kunci publik e dan ϕ(n). Secara eksplisit, nilai d diperoleh dari membagi e dengan persamaan
(5) maka:

d ≡ e−1 (mod ϕ(n)) (19)
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2.5 Algoritma Euclid

Algoritma Euclid merupakan salah satu cara yang efisien untuk menemukan faktor persekutuan
terbesar suatu bilangan bulat positif. Misal a dan b bilangan bulat positif bentuk umum algoritma
Euclid [14]:

a = q1b + r1 0 < r1 < b
b = q2r1 + r2 0 ≤ r2 < r1

r1 = q3r2 + r3 0 ≤ r3 < r2
... =

...
...

rn−2 = qnrn−1 + rn 0 < rn < rn−1
rn−1 = qn+1rn + 0

Algoritma Euclid tidak hanya digunakan untuk menghitung faktor persekutuan terbesar suatu
bilangan bulat positif. Algoritma ini juga berperan penting dalam penyelesaian persamaan
Diophantine linear, yaitu persamaan linear dua variabel yang memiliki koefisien dan solusi dalam
himpunan bilangan bulat. Persamaan tersebut dinyatakan sebagai [15] :

Ax + By = FPB(A, B) (20)

Jika FPB(A, B) = 1, maka nilai x merupakan invers modulo dari A (mod B) dan sebaliknya, y
merupakan invers modular dari B (mod A).

3 Hasil Utama
Setelah memahami kerangka teoretis dari algoritma RSA dan persamaan Diophantine linear,
bagian ini menyajikan kontribusi utama dari penelitian. Fokus pembahasan diarahkan pada
formulasi matematis dari proses pembangkitan kunci privat sebagai permasalahan persamaan
Diophantine linear. Pembahasan ini dilengkapi dengan algoritma penyelesaian serta ilustrasi
numerik yang bertujuan untuk memperjelas keterkaitan antara aspek teoretis dan penerapannya
dalam konteks algoritma RSA. Dengan memahami dasar-dasar teori bilangan dan algoritma
RSA, kita dapat menyusun ulang proses pembentukan kunci privat dalam bentuk yang lebih
eksplisit secara matematis, yaitu menggunakan persamaan Diophantine linear.

Untuk itu, bagian berikut menguraikan bagaimana persamaan kongruensi dalam algoritma
RSA dapat ditransformasikan menjadi bentuk persamaan Diophantine linear.

3.1 Transformasi Persamaan Kongruensi menjadi Persamaan Diophantine
Linear

Dalam algoritma RSA, Kunci privat d diperoleh dengan menyelesaikan persamaan (6) yang
diubah menjadi bentuk persamaan Diophantine linear dua variabel:

e · d − k · ϕ(n) = 1

yang merupakan bentuk umum:
Ax + By = C

dengan A = e, B = ϕ(n), dan C = 1. Persamaan diatas memiliki solusi bilangan bulat d dan
(−k) jika dan hanya jika FPB(e, ϕ(n)) = 1. Untuk memverifikasi pendekatan ini secara numerik,
berikut disajikan satu contoh kasus sederhana.
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3.2 Penerapan Langsung: Contoh Kasus Numerik

Misalkan dipilih dua bilangan prima:

p = 2027 dan q = 2029

sehingga:
n = p · q = 4112783

ϕ(n) = (p − 1)(q − 1) = 4108728

Dipilih nilai e = 127 yang memenuhi (1 < e < ϕ(n)). Untuk memastikan bahwa FPB(127, 4108728) =
1, dilakukan pemeriksaan menggunakan algoritma Euclid:

4108728 = 127 · 32352 + 24
127 = 24 · 5 + 7
24 = 7 · 3 + 3
7 = 3 · 2 + 1
3 = 1 · 3 + 0

Karena hasil akhir dari algoritma Euclid adalah 1, maka dapat disimpulkan bahwa FPB(127, 4108728) =
1, sehingga persamaan Diophantine linear yang bersesuaian dijamin memiliki solusi dalam him-
punan bilangan bulat.
Dengan adanya jaminan solusi tersebut, langkah berikutnya adalah menentukan nilai kunci
privat secara eksplisit melalui penyelesaian persamaan Diophantine. Proses ini dilakukan dengan
metode substitusi balik berdasarkan hasil dari algoritma Euclid sebelumnya.

3.3 Menyelesaikan Persamaan Diophantine

Dilakukan substitusi balik dari algoritma Euclid:

127 · d − k · 4108728 = 1

Langkah-langkah substitusi balik:

1 = 7 − 3 · 2
= (127 − 24 · 5) − 2(24 − 7 · 3)
= 127 − 24 · 5 − 2 · 24 + 7 · 6
= 127 − 24 · 7 + 6(127 − 24 · 5)
= 127 − 24 · 7 + 6 · 127 − 24 · 30
= (1 + 6)127 − (30 + 7)24
= 7 · 127 − 37 · 24
= 7 · 127 − 37(4108728 − 127 · 32352)
= 7 · 127 − 37 · 4108728 + 127 · 1197024
= (7 + 1197024)127 − 37 · 4108728
= 1197031 · 127 − 37 · 4108728

Maka diperoleh nilai d = 1197031 dan k = −37 sebagai solusi dari persamaan Diophantine linear.
Untuk memastikan bahwa nilai kunci privat tersebut benar-benar valid dan dapat digunakan
dalam praktik, langkah selanjutnya adalah melakukan proses enkripsi dan dekripsi terhadap
sebuah contoh plainteks sederhana. Proses validasi ini bertujuan untuk membuktikan bahwa
kunci privat hasil penyelesaian persamaan Diophantine bekerja sesuai dengan prinsip dasar
algoritma RSA.
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3.4 Validasi Melalui Proses Enkripsi dan Dekripsi Algoritma RSA

Misal plainteks yang digunakan adalah "Hai", yang dalam kode ASCII 8-bit diwakili oleh:

Tabel 1: Konversi Alfabet ke ASCII 8-bit

Alfabet ASCII 8-bit

H 072
a 097
i 105

Proses Enkripsi

Melakukan enkripsi plainteks dengan menggunakan persamaan (9), hasil enkripsi:

c1 = 072127 (mod 4112783) = 3134209
c2 = 097127 (mod 4112783) = 3840137
c3 = 105127 (mod 4112783) = 2783386

Proses Dekripsi

Melakukan dekripsi cipherteks dengan menggunakan persamaan (10), hasil dekripsi:

m1 = 31342091197031 (mod 4112783) = 072
m2 = 38401371197031 (mod 4112783) = 097
m3 = 27833861197031 (mod 4112783) = 105

Dengan demikian diperoleh kembali plainteks asli "Hai", yang menunjukkan bahwa nilai d yang
diperoleh dari penyelesaian persamaan Diophantine linear valid digunakan sebagai kunci privat
dalam algoritma RSA.

4 Kesimpulan
Penelitian ini bertujuan untuk menjelaskan secara formal bagaimana persamaan Diophantine
linear berperan dalam proses pembangkitan kunci privat pada algoritma RSA. Permasalahan ini
penting untuk dipahami karena struktur matematis di balik algoritma RSA menjadi landasan
utama dalam menjaga keamanan data digital di era modern.

Hasil utama yang diperoleh menunjukkan bahwa persamaan kongruensi yang digunakan
dalam pembentukan kunci privat algoritma RSA dapat diubah menjadi bentuk persamaan
Diophantine linear dua variabel. Penyelesaian persamaan Diophantine linear dua variabel,
dilakukan melalui algoritma Euclid dan substitusi balik, sehingga menghasilkan nilai kunci privat
yang valid digunakan dalam proses dekripsi. Studi kasus yang disertakan menunjukkan bahwa
proses enkripsi dan dekripsi berhasil dilakukan dengan benar menggunakan kunci hasil formulasi
tersebut.

Kontribusi utama dari kajian ini adalah formalisasi eksplisit dari langkah pembangkitan kunci
privat algoritma RSA sebagai persoalan penyelesaian persamaan Diophantine linear. Hal ini
memberikan dasar teoritis yang kuat dan memperjelas hubungan antara teori bilangan dengan
algoritma kriptografi modern, khususnya dalam konteks algoritma RSA.

Penelitian ini bersifat teoretis dan belum mengeksplorasi efisiensi algoritmik pada skala bilan-
gan besar yang digunakan dalam kriptografi praktis. Oleh karena itu, arah penelitian selanjutnya
dapat diarahkan pada analisis kompleksitas algoritma Euclid dalam konteks algoritma RSA
modern, serta pengembangan pendekatan yang lebih efisien atau adaptif dalam menyelesaikan
persamaan Diophantine pada kriptografi berbasis bilangan bulat besar.
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