
Jurnal Riset Mahasiswa Matematika
Volume 5 (2) (2025), Pages 102-122
p-ISSN: 2808-1552; e-ISSN: 2808-4926

Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy
Minimization

Mohammad Jamhuri1∗ , Silvi Puspita Sari1, Siti Amiroch2, Juhari1, and Vivi Aida Fitria3

1Department of Mathematics, Faculty of Science and Technology, UIN Maulana Malik Ibrahim, Malang,
Indonesia

2Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Islam Darul
Ulum, Lamongan, Indonesia

3Institut Teknologi dan Bisnis Asia, Malang, Indonesia

Abstract

Binary cross-entropy (BCE) minimization is a standard objective in probabilistic binary
classification, yet practical training pipelines often rely on first-order methods whose perfor-
mance can be sensitive to step-size choices and may require many iterations to reach low-loss
solutions. This paper studies an inexact curvature-based solver that combines a (generalized)
Gauss–Newton approximation with conjugate gradient (CG) inner iterations for minimizing
the regularized BCE objective in full-batch logistic regression. At each outer iteration, the
method computes a descent direction by approximately solving a damped Gauss–Newton
system in a matrix-free manner via repeated products with X and X⊤, and terminates CG
according to a relative-residual inexactness rule. Numerical experiments on three benchmark
datasets show that the proposed Inexact GGN–CG can substantially reduce the number
of outer iterations on smaller numerical data, while remaining competitive in predictive
performance, and can improve both validation and test mean BCE on larger mixed-type data
after one-hot encoding. In particular, on Adult Census Income the method achieves lower
test mean BCE (0.3176 ± 0.0044) and higher F1-score (0.6623 ± 0.0066) than Adam and
gradient descent under the same regularization-selection protocol, at the cost of additional
CG work. These results highlight how damping and inexactness jointly govern the trade-off
between curvature-solve effort, wall-clock time, and achieved BCE values in deterministic
logistic-regression training.

Keywords: generalized Gauss–Newton; conjugate gradient; inexact methods; binary cross-
entropy; logistic regression; second-order optimization

1 Introduction
Binary classification problems are frequently formulated through probabilistic models that output
an estimated class probability and are trained by minimizing the binary cross-entropy (BCE)
objective [1], [2]. In the case of logistic regression, BCE coincides with the negative log-likelihood
of a Bernoulli model with a sigmoid link, providing a statistically principled loss that is well
aligned with probability calibration [1]. Despite the convexity of BCE for logistic regression,
obtaining high-accuracy solutions efficiently can still be challenging in practice when feature
dimension is large, data are ill-conditioned, or when strict tolerances on the objective or gradient
norm are required for downstream tasks [3].

A common approach to BCE minimization is to use first-order optimization methods such as
gradient descent variants and adaptive stochastic optimizers [4]. These methods are attractive

∗Corresponding author. E-mail: m.jamhuri@live.com

Submitted: June 23, 2025
DOI: https://dx.doi.org/10.18860/jrmm.v5i2.34739

Reviewed: November 21, 2025 Accepted: December 21, 2025

mailto:m.jamhuri@live.com
https://dx.doi.org/10.18860/jrmm.v5i2.34739


Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

due to their low per-iteration cost and minimal linear algebra requirements, but they can exhibit
slow convergence near the optimum and can be sensitive to hyperparameter choices such as
learning rates, batch sizes, and decay schedules. By contrast, second-order methods exploit
curvature information to produce search directions that more directly reflect the local geometry
of the objective, often leading to faster local convergence and improved robustness to scaling in
the parameter space. The primary obstacle is that second-order updates typically require solving
linear systems involving Hessian-related matrices, which can be computationally expensive or
memory-intensive if treated with direct factorizations, especially as the parameter dimension
grows [5], [6].

To address this bottleneck, this paper considers a curvature approximation and an inexact
linear solve strategy that together yield an efficient and stable algorithm for BCE minimization.
Specifically, we employ the generalized Gauss–Newton (GGN) approximation, which can be
viewed as a structured positive semidefinite surrogate for the true Hessian that is particularly
natural for objectives expressed as a composition of a prediction map with a convex loss [7],
[8], [9], [10], [11]. The resulting linear system is not solved exactly; instead, we compute an
approximate step using the conjugate gradient (CG) method and terminate the inner iterations
according to an inexactness criterion.

Recent work has also explored scalable second-order or curvature-aware optimizers and Gauss–
Newton-style updates in modern machine-learning pipelines [12], [13], [14]. These approaches
are motivated by the observation that first-order methods can be sensitive to step-size choices
and may converge slowly in ill-conditioned regimes, while curvature information can provide
better-scaled updates [15]. At the same time, they avoid the classical bottleneck of second-order
methods by relying on matrix-free curvature–vector products and approximate inner solves,
rather than explicit Hessian formation or direct factorizations [16]. This perspective aligns with
inexact GGN strategies: early termination of inner iterations can reduce computational cost
substantially, provided that the resulting direction remains a descent direction and is globalized
via line search or damping. In this paper, we investigate this trade-off in a deterministic and
convex setting (regularized logistic regression), allowing the roles of damping and inexactness to
be examined with minimal confounding factors.

The contributions of this work are threefold. First, we formulate an inexact GGN–CG method
tailored to BCE minimization and specialize it to logistic regression, providing a baseline setting
where the underlying operators and convergence behavior can be studied clearly. Second, we
present a matrix-free implementation in which the action of the damped GGN operator on a
vector is computed via inexpensive matrix–vector products, enabling the use of CG without
explicit formation of the curvature matrix. Third, we conduct a computational study that
compares the proposed method to standard first-order baselines under controlled preprocessing
and stopping criteria, with emphasis on the interplay between damping, inexactness tolerance,
runtime, and the achieved objective value.

The remainder of the paper is organized as follows. The next section introduces the BCE
objective for logistic regression and reviews the GGN approximation in this context. The
methodology section then details the inexact GGN–CG algorithm, including damping, the
CG stopping rule, and practical considerations for stable implementation. The experimental
section describes datasets, preprocessing, baseline methods, and evaluation metrics, followed by
numerical results and discussion. The paper concludes with a summary of findings and directions
for subsequent work.

2 Problem Formulation and Background

This work considers binary classification with inputs xi ∈ Rn and labels yi ∈ {0, 1} for i = 1, . . . , m.
Let X ∈ Rm×n denote the design matrix whose ith row is x⊤

i , and let y ∈ Rm collect the labels.
The baseline model is logistic regression, in which the logit is linear in the parameters θ ∈ Rn

Mohammad Jamhuri 103



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

and defined by
zi(θ) = x⊤

i θ, z(θ) = Xθ. (1)
The predicted probability of the positive class is given by the sigmoid mapping pi(θ) = σ(zi(θ)),
where σ(t) =

(
1 + e−t

)−1. Writing p(θ) ∈ Rm for the vector of probabilities, we have p(θ) = σ(Xθ)
with σ(·) applied componentwise.

2.1 Binary cross-entropy objective

The empirical binary cross-entropy (BCE) objective for logistic regression is

L(θ) = 1
m

m∑
i=1

ℓi(θ), ℓi(θ) = −
(
yi log pi(θ) +

(
1− yi

)
log

(
1− pi(θ)

))
. (2)

To improve numerical stability and to control model complexity, we optionally consider ℓ2-
regularization, leading to

Lβ(θ) = L(θ) + β

2 ∥θ∥
2
2, (3)

where β ≥ 0 is a regularization parameter. For logistic regression, L(θ) is convex in θ, and Lβ(θ)
is strongly convex when β > 0, which is advantageous for conditioning and uniqueness of the
minimizer [1], [3].

The gradient of the BCE objective admits a compact form. Using the identity ∇θz(θ) = X,
one obtains

∇L(θ) = 1
m

X⊤(
p(θ)− y

)
, (4)

and, with ℓ2-regularization,

g(θ) := ∇Lβ(θ) = 1
m

X⊤(
p(θ)− y

)
+ βθ. (5)

These expressions highlight that gradient evaluation requires only matrix–vector products with
X and X⊤, together with the componentwise sigmoid computation [17].

2.2 Curvature structure and the generalized Gauss–Newton approximation

Second-order methods for minimizing Lβ(θ) exploit curvature information through the Hessian
(or a structured approximation). For logistic regression with mean BCE, the curvature admits
a convenient weighted form involving the design matrix and a diagonal weight matrix. For
completeness, we outline how this structure arises.

We start from the mean BCE written in the numerically convenient form

L(θ) = 1
m

m∑
i=1

(
log

(
1 + exp(zi)

)
− yizi

)
, zi = x⊤

i θ, (6)

so that pi = σ(zi) and ∇θzi = xi. Define ϕi(zi) := log(1 + exp(zi))− yizi. Then

dϕi

dzi
= pi − yi,

d2ϕi

dz2
i

= pi(1− pi) =: wi, (7)

with 0 < wi ≤ 1
4 . Recalling that ∇L(θ) = 1

mX⊤(p(θ)− y), differentiating once more yields

∇2L(θ) = 1
m

m∑
i=1

wi xix
⊤
i = 1

m
X⊤W (θ)X, W (θ) = diag(w1, . . . , wm). (8)

With ℓ2-regularization Lβ(θ) = L(θ) + β
2 ∥θ∥

2
2, the penalty contributes ∇2

(
β
2 ∥θ∥

2
2

)
= βI, hence

Hβ(θ) = ∇2Lβ(θ) = 1
m

X⊤W (θ)X + βI. (9)

Mohammad Jamhuri 104



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

Generalized Gauss–Newton (GGN). The generalized Gauss–Newton approximation pro-
vides a positive semidefinite curvature model for objectives expressed as a convex loss applied to
model outputs [7], [8], [9], [10]. In logistic regression, the model map is the linear logit z(θ) = Xθ,
and the scalar BCE loss is convex in each zi. In this case, the GGN matrix coincides with the
exact Hessian of L(θ), and the regularized GGN is therefore

Gβ(θ) = 1
m

X⊤W (θ)X + βI = Hβ(θ). (10)

Implication for scalable solvers. The representation X⊤W (θ)X is attractive computationally
because it enables matrix-free curvature–vector products via multiplications with X and X⊤,
together with inexpensive elementwise weighting by w(θ). In the next subsection, we use this
structure to define a damped curvature system and show how its action on a vector can be
evaluated without explicitly forming X⊤W (θ)X.

2.3 Damping and the linear system underlying GGN steps

Building on the curvature structure above, at iterate θk we compute a curvature-informed
direction by solving a damped GGN system. In general the damping can be iteration-dependent;
in our experiments we use a fixed value (i.e., λk ≡ λ within each run).(

Gβ(θk) + λkI
)
sk = −g(θk), (11)

where λk > 0 is a damping parameter. The term λkI ensures strict positive definiteness of
the system matrix and improves conditioning, thereby supporting robust iterative solution by
conjugate gradient (CG). Importantly, the left-hand side of (11) need not be formed explicitly.
For any vector v ∈ Rn, the matrix–vector product required by CG is

(
Gβ(θk) + λkI

)
v = 1

m
X⊤(

W (θk)(Xv)
)

+ (β + λk)v. (12)

which depends only on matrix–vector products with X and X⊤ and componentwise multiplication
by the diagonal weights. This matrix-free structure is central to the scalability of the proposed
inexact GGN–CG approach, and it enables the use of iterative linear algebra without storing or
factorizing curvature matrices [5], [6].

Equations (11)–(12) show that the curvature step for regularized logistic regression can be
computed through matrix–vector products with X and X⊤ together with elementwise weighting
by W (θ). This matrix-free representation motivates an iterative linear solver in the inner loop,
avoiding explicit formation or factorization of curvature matrices.

In the next section, we instantiate this idea into a practical inexact second-order method by
solving the damped generalized Gauss–Newton system approximately using conjugate gradient
(CG) and globalizing the update with Armijo backtracking line search.

3 Proposed Method: Inexact GGN–CG
This section describes an inexact generalized Gauss–Newton method in which the curvature
system is solved approximately by conjugate gradient (CG). We focus on regularized logistic
regression with a mean binary cross-entropy objective. In the numerical study, the damping level
and CG forcing tolerance are selected by validation and then held constant throughout the outer
iterations of each run.

Although the formulation in Section 2 admits iteration-dependent damping (as in (11)), in
our numerical study we select a single damping level λ by validation and keep it fixed within
each run for interpretability and controlled comparison across solvers.

Mohammad Jamhuri 105



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

Figure 1 provides an overview of the outer–inner structure. It highlights the matrix-free
application of the damped GGN operator within CG, the relative-residual stopping rule for the
inner solve, and globalization via Armijo backtracking line search with a descent safeguard.

Set θ0 ← 0;
choose β, damping λ > 0, forcing

η ∈ (0, 1), CG cap Tmax, line-search (c, ρ).

Initialize

k = 0, 1, . . .
Compute logits zk = Xθk, probabilities

pk = σ(zk), and weights wk = pk⊙ (1− pk).
Compute gradient gk = 1

m
X⊤(pk−y)+βθk.

Outer iteration

∥gk∥2 ≤ εg
or early-stopping?

Define Ak := 1
m
X⊤diag(wk)X +

(β + λ)I. For any v ∈ Rn

(no explicit matrix formed):

Akv =
1

m
X⊤(wk ⊙ (Xv)

)
+ (β + λ)v.

Matrix-free operator (GGN + damping)

Run CG on Aks = −gk (matrix-free) until

∥r(t)k ∥2 ≤ η∥gk∥2 or t = Tmax.

Return sk (record CG iterations).

G inner solve (inexact)

g⊤k sk < 0?

If not, set sk ← −gk.
Descent safeguard

Initialize α ← 1. While

Lβ(θk + αsk) > Lβ(θk) + c α g⊤k sk,

set α ← ρα.

Armijo backtracking line search

θk+1 ← θk + αsk.
Log histories (BCE/time/CG/work)

and continue.

Update

Return θ (last iterate)
and recorded histories.

End
No

No

Yes

Yes

Figure 1: Flowchart of the proposed Inexact GGN–CG method for regularized logistic regression. Each
outer iteration forms wk and gk, applies the damped GGN operator Ak in a matrix-free manner within
CG, terminates the inner solve using the relative-residual rule ∥r(t)

k ∥2 ≤ η∥gk∥2, and globalizes the step
using Armijo backtracking with a descent safeguard.

3.1 Damped generalized Gauss–Newton step

Let θk be the current iterate and define the regularized training objective Lβ(θ) = L(θ) + β
2 ∥θ∥

2
2,

where L(θ) is the mean BCE. The method computes a search direction sk by approximately
solving the damped generalized Gauss–Newton system

Aksk = −gk, Ak := Gβ(θk) + λI, gk := ∇Lβ(θk), (13)

where λ > 0 is a (run-wise) damping parameter. For logistic regression,

Gβ(θk) = 1
m

X⊤WkX + βI, Wk = diag(wk), wk = pk ⊙ (1− pk), pk = σ(Xθk). (14)

Equivalently,
Ak = 1

m
X⊤WkX + (β + λ)I. (15)

Mohammad Jamhuri 106



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

Note that Ak changes with k through Wk, while λ is fixed within each run. The damping term
λI ensures that the system matrix is strictly positive definite and improves conditioning; see
Lemma 1.

For CG, we only require matrix–vector products. For any v ∈ Rn,

Akv = 1
m

X⊤(
Wk(Xv)

)
+ (β + λ)v. (16)

Since Wk = diag(wk), we implement Wk(Xv) as the elementwise product wk ⊙ (Xv).

3.2 Conjugate gradient and the inexactness criterion

We apply CG to (13) in a matrix-free manner. By Lemma 1, Ak is symmetric positive definite
for all k when λ > 0, hence CG is well-defined [5]. Let s

(t)
k denote the t-th CG iterate and

r
(t)
k := Aks

(t)
k + gk (17)

the linear-system residual. CG is terminated early using the relative residual rule

∥r(t)
k ∥2 ≤ η∥gk∥2, (18)

where η ∈ (0, 1) is a forcing parameter (held constant within a run), together with a hard cap
t ≤ Tmax [5], [18]. Smaller η typically increases inner iterations but can reduce outer iterations,
while larger η reduces inner cost at the risk of slower outer progress. In all experiments, η is
selected by validation and then fixed within a run.

3.3 Step acceptance via backtracking line search

Given an approximate direction sk, we update

θk+1 = θk + αksk, (19)

where αk is chosen by Armijo backtracking line search on the training objective Lβ [5]:

Lβ(θk + αksk) ≤ Lβ(θk) + c αk g⊤
k sk, (20)

with c ∈ (0, 1) and reduction factor ρ ∈ (0, 1). If numerical issues or inexact solves produce a
non-descent direction (g⊤

k sk ≥ 0), we enforce a descent safeguard by setting sk ← −gk, yielding
g⊤

k sk = −∥gk∥22 < 0. Proposition 2 guarantees that, for any descent direction, backtracking
accepts a step size in finitely many reductions and ensures strict decrease in Lβ.

3.4 Algorithm summary and basic guarantees

Algorithm 1 summarizes the full method used in the numerical study. The training objective
includes ℓ2-regularization, while validation and test losses are reported as mean BCE without
the penalty term. All computations are full-batch and use a matrix-free representation of the
generalized Gauss–Newton operator via products with X and X⊤.

Proposition 1 (Curvature structure for mean BCE). Let L(θ) denote the mean BCE for logistic
regression,

L(θ) = 1
m

m∑
i=1

(
log

(
1 + exp(x⊤

i θ)
)
− yi x⊤

i θ
)
, p(θ) = σ(Xθ).

Then
∇L(θ) = 1

m
X⊤(p(θ)− y), ∇2L(θ) = 1

m
X⊤W (θ)X,

where W (θ) = diag(pi(θ)(1 − pi(θ))) ⪰ 0 and 0 < pi(θ)(1 − pi(θ)) ≤ 1
4 for all i and all θ.

Moreover, for this model and loss, the generalized Gauss–Newton matrix coincides with ∇2L(θ).

Mohammad Jamhuri 107



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

Algorithm 1 Inexact GGN–CG with Armijo line search for regularized logistic regression
Input: X ∈ Rm×n (including intercept), y ∈ {0, 1}m, regularization β ≥ 0, damping λ > 0,

forcing parameter η ∈ (0, 1), CG cap Tmax, outer budget Kmax, tolerance εg > 0, Armijo
c ∈ (0, 1), backtracking ρ ∈ (0, 1)

Output: parameters θ
1: θ0 ← 0 ∈ Rn

2: for k = 0, 1, . . . , Kmax − 1 do
3: zk ← Xθk, pk ← σ(zk), wk ← pk ⊙ (1− pk)
4: gk ← 1

mX⊤(pk − y) + βθk

5: if ∥gk∥2 ≤ εg then
6: break
7: end if
8: Define Akv := 1

mX⊤(
wk ⊙ (Xv)

)
+ (β + λ)v

9: Use CG to approximately solve Aksk = −gk with ∥r(t)
k ∥2 ≤ η∥gk∥2 and t ≤ Tmax

10: if g⊤
k sk ≥ 0 then

11: sk ← −gk ▷ descent safeguard
12: end if
13: α← 1
14: while Lβ(θk + αsk) > Lβ(θk) + c α g⊤

k sk do
15: α← ρ α
16: end while
17: θk+1 ← θk + αsk

18: end for
19: return θk ▷ last available iterate (after break or after Kmax steps)

Proof. Write z = Xθ and use L(θ) = 1
m

∑m
i=1

(
log(1 + exp(zi)) − yizi

)
. Differentiating gives

∇L(θ) = 1
mX⊤(σ(z) − y). Differentiating again yields ∇2L(θ) = 1

mX⊤W (θ)X with W (θ) =
diag(σ(zi)(1 − σ(zi))). Since σ(t)(1 − σ(t)) ∈ (0, 1

4 ] for all t ∈ R, we have W (θ) ⪰ 0. Because
the model map z(θ) = Xθ is linear and the scalar loss is convex in zi, the generalized Gauss–
Newton construction reduces to the same curvature term, hence it coincides with ∇2L(θ) in this
setting.

Lemma 1 (SPD property under regularization and damping). Fix β ≥ 0 and λ > 0, and define
A(θ) = 1

mX⊤W (θ)X + (β + λ)I. Then A(θ) is symmetric positive definite for every θ ∈ Rn.

Proof. Symmetry is immediate. For any nonzero v ∈ Rn,

v⊤A(θ)v = 1
m

(Xv)⊤W (θ)(Xv) + (β + λ)∥v∥22.

The first term is nonnegative since W (θ) ⪰ 0, and the second term is strictly positive because
β + λ > 0. Therefore v⊤A(θ)v > 0 for all v ̸= 0, hence A(θ) ≻ 0.

Proposition 2 (Existence of an Armijo-accepted step). Assume Lβ(θ) = L(θ) + β
2 ∥θ∥

2
2 is

continuously differentiable. If sk satisfies g⊤
k sk < 0, then Armijo backtracking line search with

(20) accepts a step size α > 0 in finitely many reductions. Consequently, Lβ(θk+1) < Lβ(θk).

Proof. Since Lβ is continuously differentiable, the directional derivative at α = 0 is d
dαLβ(θk +

αsk)
∣∣
α=0 = g⊤

k sk < 0. Thus there exists ᾱ > 0 such that for all α ∈ (0, ᾱ] the Armijo inequality
holds. Backtracking generates a geometric sequence α, ρα, ρ2α, . . . , which must enter (0, ᾱ] in
finitely many steps, hence it accepts some α > 0. Moreover, the right-hand side of Armijo is
strictly less than Lβ(θk) when α > 0 and g⊤

k sk < 0, so the accepted step yields strict decrease.

Mohammad Jamhuri 108



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

Table 1: Summary of datasets used in the experimental study. The feature dimension n is reported after
preprocessing and includes an intercept term. The positive-class proportion is π = 1

m

∑m
i=1 yi.

Dataset m n π

Pima Indians Diabetes 768 9 0.3490
Breast Cancer Wisconsin 569 31 0.3726
Adult Census Income 32 561 108 0.2408

3.5 Stopping conditions and practical parameterization

The outer loop terminates when
∥gk∥2 ≤ εg, (21)

or when the outer-iteration budget Kmax is reached. In the experiments, we additionally employ
a stagnation-based early-stopping rule on the reported training mean BCE: the solver terminates
if the relative improvement stays below a fixed tolerance for a fixed number of consecutive
iterations. The stagnation test is applied to the reported mean BCE (without the ℓ2 term), while
the line search enforces descent on Lβ. The damping λ, forcing parameter η, and CG cap Tmax
are treated as hyperparameters selected on the validation set and then fixed within each run.

3.6 Computational cost per iteration

The dominant cost in each outer iteration is the sequence of CG matrix–vector products with Ak.
Each CG iteration evaluates (16), requiring one multiplication by X and one multiplication by
X⊤, plus elementwise operations for the weights. Consequently, runtime is governed primarily
by the total number of Xv and X⊤u products, motivating our reporting of both wall-clock time
and the accumulated CG iterations.

4 Experimental Setup
This section describes the experimental protocol used to evaluate the proposed Inexact GGN–CG
method for binary cross-entropy (BCE) minimization in regularized logistic regression. All solvers
are implemented within a single codebase to ensure consistent preprocessing, objective evaluation,
and timing procedures. Unless stated otherwise, all reported results are aggregated over multiple
random seeds and presented as mean ± standard deviation.

4.1 Datasets

Experiments are conducted on three benchmark binary classification datasets that exhibit distinct
scales and feature types: Pima Indians Diabetes, Breast Cancer Wisconsin, and Adult Census
Income. Pima Indians Diabetes is a small-to-medium, fully numerical tabular dataset. Breast
Cancer Wisconsin is a small numerical dataset with strong signal-to-noise and near-separability
in several splits. Adult Census Income is substantially larger and contains both numerical and
categorical features, leading to a higher-dimensional representation after one-hot encoding.

For label conventions, we use the dataset-provided binary outcome for Pima Indians Diabetes.
For Breast Cancer Wisconsin, we map malignant (“M”) to 1 and benign (“B”) to 0. For Adult
Census Income, we map income > 50K to 1 and ≤ 50K to 0 after stripping whitespace and
trailing punctuation in the label field. Table 1 reports the total number of samples m, the number
of features n after preprocessing including the intercept term, and the positive-class prevalence π.

4.2 Data splitting and preprocessing

For each dataset, we create stratified splits into training, validation, and test sets with proportions
60%/20%/20%. Concretely, we first split the full dataset into a 60% training set and a 40%

Mohammad Jamhuri 109



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

temporary set, and then split the temporary set evenly into validation and test sets. Results are
reported over five random seeds (seeds 0–4), and all summary statistics are computed across
these seeds.

All preprocessing operations are fitted using the training split only and then applied unchanged
to the validation and test splits to avoid information leakage. Numerical features are standardized
using the training-set mean and standard deviation. For the Adult dataset, categorical features
are one-hot encoded; categories not observed in the training split are ignored at transform time.
Missing categorical entries represented by the symbol “?” are treated as an explicit “Unknown”
category, and missing numerical values are imputed using the training-set median.

After preprocessing, an intercept is incorporated by augmenting the design matrix with
a column of ones, so that the parameter vector includes a bias term. Consistent with the
implementation used to generate the reported results, the ℓ2 penalty is applied to all parameters,
including the intercept.

4.3 Solvers

We compare three deterministic full-batch solvers for minimizing a regularized logistic-regression
objective. The proposed method is the inexact generalized Gauss–Newton method with conjugate
gradient inner solves and Armijo backtracking line search, denoted Inexact GGN–CG. Two
first-order baselines are included: full-batch gradient descent (GD) and Adam.

All methods optimize the same regularized training objective

Lβ(θ) = L(θ) + β

2 ∥θ∥
2
2, (22)

where L(θ) is the mean BCE on the training set. For GD, we use a stabilized step-size safeguard:
if a tentative update increases the regularized training objective, the effective learning rate is
repeatedly halved (up to a fixed number of reductions) until the objective decreases. For Adam,
we use the standard moment parameters (β1, β2, ϵ) = (0.9, 0.999, 10−8).

For Inexact GGN–CG, the direction is computed by approximately solving the damped
curvature system using CG with a relative residual stopping rule, and step acceptance is enforced
by Armijo backtracking line search on Lβ(θ) (with fixed Armijo parameters c = 10−4 and
backtracking factor ρ = 0.5, capped at a fixed maximum number of backtracking steps).

Curvature-aware optimization has also been studied in scalable second-order optimizers for
machine learning, motivating our comparison between a Gauss–Newton–CG style method and
first-order baselines [12], [13].

4.4 Regularization and hyperparameter selection

Regularization is controlled by an ℓ2 penalty parameter β ≥ 0 applied to all parameters. The
key design choice in this study is that β is selected once per dataset and seed and then held fixed
across all solvers for that seed, ensuring that methods are compared on the same regularized
objective.

The selection procedure is as follows. For each candidate β in the grid

β ∈ {0, 10−4, 10−3, 10−2},

we tune each solver on the training split and evaluate performance on the validation split using
the validation mean BCE without the penalty term. We then define the validation score of β
as the best (minimum) validation mean BCE achieved by any of the solvers under that β, and
select β∗ as the minimizer of this score. After choosing β∗ for a given dataset and seed, we retain
for each solver its own validation-selected hyperparameters under β∗ and use these settings for
test evaluation.

Given β∗, solver-specific hyperparameters are chosen by validation search over the following
grids:

Mohammad Jamhuri 110



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

• GD: learning rate lr ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2, 3 · 10−2, 10−1}.
• Adam: learning rate lr ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2}.
• Inexact GGN–CG: damping λ ∈ {10−4, 10−3, 10−2, 10−1, 1}, forcing tolerance

η ∈ {10−1, 10−2, 10−3} in the relative residual rule ∥r∥2 ≤ η∥g∥2, and CG iteration cap
Tmax ∈ {50, 100, 200}.

Within each run of Inexact GGN–CG, the selected damping λ and forcing tolerance η are held
constant throughout the outer iterations.

4.5 Stopping criteria and iteration budgets

All methods are run with dataset-specific iteration budgets to balance runtime and comparability
across seeds. For Pima Indians Diabetes and Breast Cancer Wisconsin, the maximum number of
outer iterations is set to 300, whereas for Adult Census Income it is set to 120 to keep runtimes
practical given the larger sample size and one-hot encoded representation.

A stationarity tolerance is imposed via the gradient norm condition

∥∇Lβ(θ)∥2 ≤ 10−4. (23)

In addition, an early-stopping criterion based on stagnation of the reported training mean BCE
is used: if the relative improvement in training mean BCE (computed without the ℓ2 term) falls
below 10−10 for eight consecutive outer iterations, the solver terminates. For Inexact GGN–CG,
the inner CG loop terminates when either the relative residual condition is met or the iteration
cap Tmax is reached; the accumulated number of CG iterations is recorded as an additional proxy
for linear-algebra effort.

4.6 Evaluation metrics and reporting

Optimization efficiency is quantified by (i) the number of outer iterations, (ii) the total number
of CG iterations accumulated across outer iterations for Inexact GGN–CG, and (iii) wall-clock
training time measured consistently across methods. Time is measured around the solver loop
and includes all computations performed by the solver (including line search and CG iterations)
but excludes dataset loading and preprocessing.

Predictive performance is assessed on the held-out test set using the mean BCE without the
ℓ2 penalty term, and threshold-based classification metrics obtained by predicting class labels
via ŷ = I(p ≥ 0.5). We report accuracy, precision, recall, and F1-score. All reported metrics are
aggregated over the five random seeds and presented as mean ± standard deviation. In addition,
convergence plots report training mean BCE versus outer iteration and versus wall-clock time,
averaged across seeds.

5 Results and Discussion
This section reports empirical results for binary cross-entropy minimization in logistic regression
and analyzes the optimization behavior and predictive performance of Inexact GGN–CG relative to
full-batch first-order baselines (GD and Adam). All results follow the protocol in Section 4, using
stratified 60%/20%/20% splits, training-set standardization, validation-based hyperparameter
selection, and reporting as mean ± standard deviation across five random seeds.

To avoid long sequences of floating objects, we organize results by dataset. Within each
dataset, we first discuss optimization efficiency (outer iterations, wall-clock time, and CG work),
then convergence trajectories, and finally held-out predictive performance. For readability, the
two trajectory plots (loss versus iteration and loss versus time) are grouped as subfigures within
a single figure per dataset. Note that reaching the outer-iteration cap does not necessarily
imply lack of convergence; rather, it indicates that the common stopping rules (stationarity and

Mohammad Jamhuri 111



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

stagnation tolerances) were not triggered earlier under the selected hyperparameters and fixed
budgets, which we keep consistent across solvers for comparability.

5.1 Cross-dataset trade-off and a hardware-agnostic work proxy

Wall-clock time is the most practical efficiency metric, but it can vary substantially across
environments (CPU model, BLAS backend, sparse-matrix routines, and I/O). To complement
time-based reporting, we therefore summarize efficiency using a simple, implementation-agnostic
work proxy that captures the dominant linear-algebra cost shared by all solvers in this study:
repeated products with the design matrix X and its transpose X⊤. This proxy is particularly
relevant for Inexact GGN–CG, where each inner CG iteration requires one multiplication by X
and one multiplication by X⊤ to evaluate the damped GGN operator in a matrix-free manner.

Concretely, we define the cumulative work as the approximate number of (Xv + X⊤u)
products incurred over the course of training. We assign a baseline cost of 2 such products per
outer iteration (to reflect the main gradient-related products needed to compute logits and the
gradient), and for Inexact GGN–CG we add 2 additional products per CG iteration. This yields
the per-run work proxy

work ≈ 2 K + 2
K∑

k=1
tk, (24)

where K is the number of outer iterations and tk is the number of CG iterations taken at outer
iteration k (with tk = 0 for GD and Adam). While this proxy does not account for every auxiliary
objective evaluation (e.g., backtracking steps), it aligns with the dominant cost driver in all
methods—sparse matrix–vector multiplications—and provides a consistent lens for comparing
runs across datasets and solvers.

0 200 400 600
Approx. # (Xv + Xᵀu)

0.2

0.4

Te
st

 m
ea

n 
B

C
E

Pima Indians Diabetes

500 1000 1500
Approx. # (Xv + Xᵀu)

Breast Cancer Wisconsin

200 400 600 800 1000
Approx. # (Xv + Xᵀu)

Adult Census Income

Adam GD Inexact_GGN_CG

Figure 2: Accuracy–effort trade-off across datasets. Each point corresponds to one random seed. The
horizontal axis reports the work proxy in (24) (approx. number of (Xv + X⊤u) products), while the
vertical axis reports test mean BCE. Error bars indicate mean ± one standard deviation across seeds.

Figure 2 summarizes the resulting effort–accuracy trade-off across datasets. On Pima Indians
Diabetes, curvature-informed steps can reduce the number of outer iterations substantially, and
the added CG effort is often offset by the decreased outer-loop budget, yielding competitive
(sometimes lower) total work at comparable test BCE. On Breast Cancer Wisconsin, the problem
is small and comparatively benign, so first-order baselines remain competitive and the additional
CG work does not reliably translate into improved test BCE. On Adult Census Income, Inexact
GGN–CG expends more work due to inner solves, but this additional linear-algebra effort is
consistently associated with lower test mean BCE, matching the improvements observed in
validation and downstream metrics reported in the dataset-specific subsections below.

Mohammad Jamhuri 112



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

5.2 Pima Indians Diabetes

Pima Indians Diabetes is a medium-scale, fully numerical dataset with a modest feature dimension
after standardization and inclusion of an intercept (Table 1). In this setting, all three solvers
achieve similar validation and test losses, but they differ substantially in optimization efficiency,
especially in the number of outer iterations required to reach a loss plateau under the common
stopping rules and iteration budget.

Optimization efficiency. Table 2 reports efficiency statistics averaged across five random
seeds. Both GD and Adam consistently reach the outer-iteration cap (300 iterations), indicating
that neither the gradient-norm threshold nor the stagnation rule is triggered earlier under their
validation-selected learning rates. By contrast, Inexact GGN–CG often terminates substantially
earlier (64.60 ± 53.01 outer iterations on average). This reduction in outer iterations comes
with additional linear-solve work (117.60± 86.19 total CG iterations), but the net effect is still
favorable in wall-clock time: 0.0340±0.0244 seconds for Inexact GGN–CG versus 0.0621±0.0014
seconds (Adam) and 0.0733± 0.0012 seconds (GD).

In terms of validation loss, differences are relatively small: Adam achieves the lowest average
validation mean BCE, while Inexact GGN–CG is slightly higher on average. This pattern is
consistent with the interpretation that curvature-informed steps mainly improve time-to-plateau
on this dataset, but do not necessarily deliver a systematic advantage in the best attainable
validation loss under the fixed hyperparameter grids and iteration budgets.

Table 2: Optimization-efficiency summary averaged across random seeds for Pima Indians Diabetes.
Validation loss is mean BCE (without the ℓ2 penalty term).

Method Outer iters Total CG iters Time (s) Val mean BCE
Adam 300.0 ± 0.00 0.0 ± 0.00 0.0621 ± 0.0014 0.4959 ± 0.0433
GD 300.0 ± 0.00 0.0 ± 0.00 0.0733 ± 0.0012 0.4969 ± 0.0419
Inexact_GGN_CG 64.6 ± 53.01 117.6 ± 86.19 0.0340 ± 0.0244 0.5002 ± 0.0441

Convergence trajectories. Figure 3 shows the mean training BCE trajectories (averaged
across seeds) versus outer iteration and versus wall-clock time. Inexact GGN–CG exhibits a steep
initial decrease and typically reaches a plateau in relatively few outer iterations, consistent with
curvature-informed directions that better reflect local geometry early in optimization. GD and
Adam decrease the loss more gradually and continue making incremental progress throughout
the full 300-iteration budget. This qualitative behavior aligns with the cross-dataset view in
Figure 2: on Pima, the additional inner effort is frequently offset by fewer outer iterations,
yielding competitive total work and similar test BCE.

Generalization performance. Table 3 summarizes test-set predictive performance. All
methods achieve broadly comparable accuracy and F1-score, with differences that are small
relative to seed-to-seed variability. Inexact GGN–CG attains the lowest average test mean BCE,
while GD is marginally higher on accuracy and F1-score. Overall, the primary advantage of
Inexact GGN–CG on Pima is improved optimization efficiency (faster time-to-plateau) while
maintaining competitive generalization.

Table 3: Test-set performance averaged across random seeds for Pima Indians Diabetes. Test mean BCE
is computed from predicted probabilities (without the ℓ2 penalty term). Threshold-based metrics use 0.5.

Method Test mean BCE Accuracy Precision Recall F1-score
Adam 0.5045 ± 0.0222 0.7506 ± 0.0270 0.6578 ± 0.0428 0.5865 ± 0.0621 0.6183 ± 0.0417
GD 0.5012 ± 0.0229 0.7532 ± 0.0294 0.6671 ± 0.0573 0.5827 ± 0.0584 0.6197 ± 0.0395
Inexact_GGN_CG 0.4992 ± 0.0326 0.7455 ± 0.0240 0.6490 ± 0.0371 0.5790 ± 0.0632 0.6102 ± 0.0401

Mohammad Jamhuri 113



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

0 50 100 150 200 250 300
Outer iteration

0.45

0.50

0.55

0.60

0.65

0.70
M

ea
n 

B
C

E
 (t

ra
in

)
Pima Indians Diabetes

Adam
GD
Inexact_GGN_CG

(a) Mean training BCE versus outer iteration.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Wall-clock time (s)

0.45

0.50

0.55

0.60

0.65

0.70

M
ea

n 
B

C
E

 (t
ra

in
)

Pima Indians Diabetes

Adam
GD
Inexact_GGN_CG

(b) Mean training BCE versus wall-clock time.
Figure 3: Pima Indians Diabetes: training-loss trajectories averaged across five random seeds.

Take-away (Pima). On a medium-scale numerical dataset, Inexact GGN–CG delivers sub-
stantially faster convergence in terms of outer iterations (and often time), but its improvements
in validation/test BCE are modest. This indicates that the main value of curvature-informed
inexact solves here lies in reducing iteration count and reaching a plateau quickly, rather than
consistently producing a lower-loss solution under the same hyperparameter selection protocol.

5.3 Breast Cancer Wisconsin

Breast Cancer Wisconsin is a small, fully numerical dataset with strong class separability in
several splits, which often yields rapid early reductions in BCE for all solvers. In such regimes,
curvature information can still provide sharp descent directions, but the practical benefits
may be muted because the baselines already reach low loss quickly and because the remaining
improvements occur in a diminishing-returns regime where line-search and numerical conditioning
effects dominate.

Optimization efficiency. Table 4 summarizes efficiency metrics averaged across seeds. Both
GD and Adam reach the maximum outer-iteration budget (300 iterations) in every seed, indicating
that their runs did not satisfy the stationarity tolerance or stagnation condition earlier under the
selected learning rates. Inexact GGN–CG terminates earlier on average (189.8±151.25 iterations),
but with very high variability across seeds. This variability is accompanied by substantial and
also highly variable inner linear-solve effort (342.8± 242.24 CG iterations) and a corresponding
runtime increase (0.1074± 0.0805 seconds), compared with 0.0668± 0.0014 seconds (Adam) and
0.0787± 0.0039 seconds (GD).

The validation mean BCE values are close across solvers, with a slight advantage for Inexact
GGN–CG on average (0.0885 ± 0.0456). However, the large standard deviation suggests that
the validation advantage is not uniformly realized across splits. This behavior is consistent with
two interacting factors: (i) near-separable splits can make the curvature term X⊤WX sharply
dependent on the current probability saturation (through W ), and (ii) the validation-selected
(λ, η, Tmax) can substantially change the conditioning of the damped system, thereby affecting
the number of CG iterations and the aggressiveness of the resulting steps.

Table 4: Optimization-efficiency summary averaged across random seeds for Breast Cancer Wisconsin.
Validation loss is mean BCE (without the ℓ2 penalty term).

Method Outer iters Total CG iters Time (s) Val mean BCE
Adam 300.0 ± 0.00 0.0 ± 0.00 0.0668 ± 0.0014 0.0925 ± 0.0272
GD 300.0 ± 0.00 0.0 ± 0.00 0.0787 ± 0.0039 0.0953 ± 0.0203
Inexact_GGN_CG 189.8 ± 151.25 342.8 ± 242.24 0.1074 ± 0.0805 0.0885 ± 0.0456

Mohammad Jamhuri 114



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

Convergence trajectories. The loss trajectories in Figure 4 show that all methods rapidly
attain low training BCE values. After this initial phase, further loss reduction becomes incremen-
tal, and differences between solvers are less consistently reflected in wall-clock time. In particular,
while Inexact GGN–CG can exhibit sharper early decreases in some seeds, the overall time curve
is often dominated by the accumulated cost of inner CG iterations and repeated line-search
evaluations. This is a typical pattern on small, well-behaved problems: first-order solvers can
be highly competitive because their iterations are cheap and the objective landscape does not
strongly penalize the lack of curvature scaling.

0 50 100 150 200 250 300
Outer iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
B

C
E

 (t
ra

in
)

Breast Cancer Wisconsin

Adam
GD
Inexact_GGN_CG

(a) Mean training BCE versus outer iteration.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Wall-clock time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
B

C
E

 (t
ra

in
)

Breast Cancer Wisconsin

Adam
GD
Inexact_GGN_CG

(b) Mean training BCE versus wall-clock time.
Figure 4: Breast Cancer Wisconsin: training-loss trajectories averaged across five random seeds.

Generalization performance. Table 5 confirms that all solvers achieve strong test perfor-
mance, with accuracy near 0.97 and test mean BCE around 0.09–0.10. Adam attains the best
average test mean BCE and F1-score, while Inexact GGN–CG is slightly worse on recall and
F1-score on average. In near-separable regimes, small differences in β∗, stopping time, and
probability calibration can lead to noticeable changes in threshold-based metrics, even when
BCE values are close. This is particularly relevant because the threshold metrics depend on
calibration around 0.5, whereas BCE is sensitive to the full probability spectrum.

Table 5: Test-set classification performance averaged across random seeds for Breast Cancer Wisconsin.
Reported loss is mean BCE with threshold 0.5.

Method Test mean BCE Accuracy Precision Recall F1-score
Adam 0.0935 ± 0.0219 0.9737 ± 0.0107 0.9904 ± 0.0132 0.9384 ± 0.0360 0.9632 ± 0.0160
GD 0.0974 ± 0.0130 0.9702 ± 0.0100 0.9725 ± 0.0364 0.9480 ± 0.0258 0.9594 ± 0.0129
Inexact_GGN_CG 0.0997 ± 0.0298 0.9667 ± 0.0218 0.9855 ± 0.0133 0.9241 ± 0.0682 0.9524 ± 0.0339

Take-away (Breast Cancer). On a small and relatively easy dataset, first-order baselines
remain highly competitive. Although Inexact GGN–CG can match or slightly improve validation
BCE in some seeds, the additional inner CG work typically increases runtime and does not
translate into consistent improvements in test BCE or threshold-based metrics. This suggests
that, for small well-conditioned problems, the practical value of curvature information may be
limited unless additional techniques (e.g., preconditioning or adaptive damping/forcing schedules)
reduce CG effort while preserving the quality of curvature-informed steps.

5.4 Adult Census Income

Adult Census Income is the largest and most heterogeneous benchmark in our study, combining
numerical and categorical predictors that produce a higher-dimensional design after one-hot
encoding. This setting is practically important because the resulting feature matrix is typically

Mohammad Jamhuri 115



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

0 20 40 60 80 100 120
Outer iteration

0.3

0.4

0.5

0.6

0.7
M

ea
n 

B
C

E
 (t

ra
in

)
Adult Census Income

Adam
GD
Inexact_GGN_CG

(a) Mean training BCE versus outer iteration.

0.0 0.2 0.4 0.6 0.8
Wall-clock time (s)

0.3

0.4

0.5

0.6

0.7

M
ea

n 
B

C
E

 (t
ra

in
)

Adult Census Income

Adam
GD
Inexact_GGN_CG

(b) Mean training BCE versus wall-clock time.
Figure 5: Adult Census Income: training-loss trajectories averaged across five random seeds.

more ill-conditioned and exhibits heterogeneous scaling and sparsity patterns, which can degrade
the efficiency of poorly scaled first-order updates. Consequently, Adult Income provides a
useful stress test for whether curvature-informed steps translate into measurably improved BCE
minimization quality and downstream classification performance.

Optimization efficiency. Table 6 shows a clear efficiency–quality trade-off. GD and Adam
both run to the outer-iteration budget of 120 in every seed, whereas Inexact GGN–CG terminates
earlier on average (91.2± 49.37 outer iterations), albeit with substantial variability across seeds.
The earlier termination does not imply lower cost in this case: Inexact GGN–CG incurs 253±92.72
accumulated CG iterations, which increases wall-clock runtime to 0.6399± 0.2671 seconds versus
0.3555 ± 0.0063 seconds (Adam) and 0.4787 ± 0.0040 seconds (GD). Importantly, the added
work yields a large validation-loss advantage: the validation mean BCE of Inexact GGN–CG is
0.3185± 0.0083, compared with 0.3321± 0.0063 for Adam and 0.3693± 0.0044 for GD. Since the
outer budget for Adult Income is relatively tight (120 iterations), these differences in achieved
loss within the same iteration cap are especially informative.

Table 6: Optimization-efficiency summary averaged across random seeds for Adult Census Income.
Validation loss is mean BCE (without the ℓ2 penalty term).

Method Outer iters Total CG iters Time (s) Val mean BCE
Adam 120.0 ± 0.00 0 ± 0.00 0.3555 ± 0.0063 0.3321 ± 0.0063
GD 120.0 ± 0.00 0 ± 0.00 0.4787 ± 0.0040 0.3693 ± 0.0044
Inexact_GGN_CG 91.2 ± 49.37 253 ± 92.72 0.6399 ± 0.2671 0.3185 ± 0.0083

Convergence trajectories (loss versus iteration and time). Figure 5 indicates that
Inexact GGN–CG reaches lower training mean BCE within the iteration budget, consistent with
curvature-informed directions being better scaled to the local geometry induced by mixed feature
types and the sparse one-hot expansion. The time-based curves highlight the practical cost of
this improvement: the additional inner CG work and line-search evaluations increase runtime.
Thus, Adult Income illustrates the intended operating regime of inexact curvature methods: they
can deliver a better loss value (and potentially better calibration and decision performance) at
the expense of additional linear-algebra effort.

Hardware-agnostic view via a work proxy. Because wall-clock time is hardware dependent,
we additionally examine loss reduction against an implementation-agnostic work proxy: the
approximate number of (Xv + X⊤u) products. This quantity captures the dominant linear-
algebra cost for all solvers and is particularly informative for Inexact GGN–CG, where each

Mohammad Jamhuri 116



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

0 200 400 600 800 1000
Cumulative work: approx. # (Xv + Xᵀu)

0.3

0.4

0.5

0.6

0.7

M
ea

n 
B

C
E

 (t
ra

in
)

Adult Census Income

Adam
GD
Inexact_GGN_CG

Figure 6: Adult Census Income: training mean BCE versus cumulative work (approx. number of
(Xv + X⊤u) products), averaged across seeds. This view factors out hardware-dependent timing and
highlights how CG effort translates into loss reduction.

inner CG iteration evaluates one Xv and one X⊤u. Figure 6 shows that, on Adult Income, the
additional CG work invested by Inexact GGN–CG translates into consistently lower training
BCE, helping explain its superior validation and test losses. This interpretation is consistent
with the cross-dataset trade-off summarized in Figure 2.

Test performance and downstream metrics. The improvements in BCE minimization
quality carry over to held-out performance. Table 7 shows that Inexact GGN–CG achieves the
lowest test mean BCE (0.3176± 0.0044), the highest accuracy (0.8524± 0.0018), and the highest
F1-score (0.6623± 0.0066). Gains are most pronounced in recall: 0.6013± 0.0140 for Inexact
GGN–CG versus 0.5612± 0.0123 for Adam and 0.4663± 0.0156 for GD, while precision remains
comparable across methods. This pattern is consistent with a model that better separates positive
examples without substantially increasing false positives under the fixed threshold 0.5, and it
aligns with the observed reduction in BCE, which rewards well-calibrated probabilities across
the full range.

Table 7: Test-set classification performance averaged across random seeds for Adult Census Income.
Reported loss is mean BCE with threshold 0.5.

Method Test mean BCE Accuracy Precision Recall F1-score
Adam 0.3323 ± 0.0018 0.8450 ± 0.0017 0.7328 ± 0.0088 0.5612 ± 0.0123 0.6355 ± 0.0060
GD 0.3694 ± 0.0015 0.8297 ± 0.0028 0.7290 ± 0.0072 0.4663 ± 0.0156 0.5686 ± 0.0118
Inexact_GGN_CG 0.3176 ± 0.0044 0.8524 ± 0.0018 0.7376 ± 0.0086 0.6013 ± 0.0140 0.6623 ± 0.0066

Take-away (Adult Income). On the largest and most heterogeneous dataset, Inexact GGN–
CG consistently attains lower BCE and improved test metrics (particularly recall and F1) than
first-order baselines under the same regularization-selection protocol. These gains come at the
cost of increased inner linear-algebra work and higher runtime, but the work-proxy view indicates
that the additional effort is systematically converted into objective reduction. This dataset
therefore provides the strongest evidence in our study that inexact curvature solves can improve
BCE minimization quality in deterministic logistic regression when the design matrix is shaped
by mixed feature types and one-hot encoding.

5.5 Seed-to-seed variability and robustness

To assess robustness to data splits and to the validation-selected hyperparameters, we analyze
seed-to-seed variability in both optimization-efficiency indicators and held-out loss. This analysis
is particularly relevant for Inexact GGN–CG, which introduces additional hyperparameters

Mohammad Jamhuri 117



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

(damping λ, forcing tolerance η, and CG cap Tmax) that can materially affect conditioning, inner
iteration counts, and line-search behavior. By contrast, GD and Adam typically exhibit lower
variance in runtime and iteration counts under fixed budgets, especially when they frequently
reach the iteration cap.

Variability in efficiency and work. Figure 7 summarizes distributions over five random
seeds for Adult Income. As expected, Inexact GGN–CG exhibits substantially higher variability
in linear-solve effort (total CG iterations) and wall-clock time, reflecting both (i) split-dependent
conditioning effects and (ii) the fact that validation may select different (λ, η, Tmax) configurations
across seeds. In contrast, GD and Adam show nearly degenerate distributions in outer iterations
due to consistently hitting the maximum budget, and their runtime distributions are correspond-
ingly tighter. Importantly, the higher variability in Inexact GGN–CG pertains primarily to
effort, not to stability of achieved loss: the distribution of test mean BCE is consistently shifted
downward relative to both baselines, indicating that additional work is typically translated into
improved objective minimization quality.

Robustness of generalization-quality gains. The same figure indicates that, on Adult
Income, the seed-wise test mean BCE of Inexact GGN–CG is uniformly lower than GD and,
in most seeds, lower than Adam. This supports two practical conclusions. First, the method’s
validation-loss advantage is not driven by a single favorable split; it is observed across multiple
stratified partitions. Second, while the computational cost of Inexact GGN–CG can vary
meaningfully across seeds, the direction of the quality improvement in BCE is comparatively
robust. These trends are consistent with the idea that curvature-informed directions can provide
better scaling in high-dimensional heterogeneous representations, whereas the exact amount of
inner work required depends on conditioning and the selected inexactness tolerance.

Implications for reporting and future improvements. The observed variability suggests
that reporting only wall-clock time can be misleading when comparing curvature-based and
first-order methods across hardware and implementations. Complementary reporting through a
work proxy (Section 5.4) helps disentangle algorithmic effort from platform-specific timing. From
a methodological standpoint, variability in total CG iterations motivates two natural extensions:
(i) preconditioning to reduce CG iterations for a fixed damping level, and (ii) adaptive schedules
for damping and/or forcing tolerance to reduce sensitivity to split-dependent conditioning. We do
not pursue these extensions here, but the variability analysis clarifies where such improvements
would most directly affect empirical performance.

5.6 Damping and inexactness: empirical implications

The proposed method introduces two coupled mechanisms that govern both stability and
computational cost: damping of the generalized Gauss–Newton system and inexactness in the
inner CG solve. In our protocol, the damping level λ and forcing tolerance η (together with the
CG cap Tmax) are selected by validation and then held fixed within each run. Although we do
not perform a dedicated hyperparameter sweep beyond the validation grids, the seed-to-seed
variability in outer iterations, accumulated CG iterations, and runtime provides clear empirical
evidence that these parameters materially affect performance.

Role of damping. Damping improves conditioning of the linear system(
1
mX⊤W (θk)X + (β + λ)I

)
sk = −gk,

and thereby directly influences the number of CG iterations required to reach the relative residual
criterion. When λ is too small, the curvature operator can be poorly conditioned (especially in

Mohammad Jamhuri 118



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

Adam GD Inexact_GGN_CG

25

50

75

100

125
Outer iterations

Adam GD Inexact_GGN_CG

0

100

200

300

400
Total CG iterations

Adam GD Inexact_GGN_CG

0.2

0.4

0.6

0.8

Time (s)

Adam GD Inexact_GGN_CG

0.32

0.34

0.36

Test mean BCE

Adult Census Income: Seed-to-seed variability

Figure 7: Adult Census Income: seed-to-seed variability across methods. Boxplots summarize outer
iterations, total CG iterations, wall-clock time, and test mean BCE over five random seeds.

high-dimensional or near-collinear designs), which typically increases CG effort and may also
trigger more aggressive backtracking if the approximate direction is less reliable. Conversely,
overly large λ makes the system closer to (β + λ)I, shrinking the update and reducing the benefit
of curvature information; in the extreme, the step approaches a conservative scaled-gradient
update. The empirical patterns in our results are consistent with this classical trade-off: runs
with larger CG totals and longer time indicate more expensive curvature solves, while runs with
fewer outer iterations indicate that the curvature model is producing more effective directions.

Role of inexactness tolerance. The forcing parameter η controls how accurately CG solves
the damped system through the relative residual test ∥r∥2 ≤ η∥g∥2. Smaller η typically increases
inner work (more CG iterations) but can reduce outer iterations by producing higher-quality
curvature directions. Larger η reduces inner effort but can slow outer progress or place more
burden on the line search, particularly when the approximate direction is less aligned with the
true Newton/GGN direction. The existence of a clear effort–accuracy trade-off is reinforced by
the work-based plots (e.g., Figure 6): on Adult Income, the additional CG work invested by
Inexact GGN–CG translates into consistently lower BCE values, whereas on smaller and easier
problems (e.g., Breast Cancer) the marginal returns of additional inner work are less pronounced.

Interaction with line search and descent safeguards. Because the direction is produced
by an inexact linear solve, occasional non-descent directions can occur in finite precision or when
the curvature system is solved too loosely. Our implementation enforces a descent safeguard
(sk ← −gk if g⊤

k sk ≥ 0) and globalizes updates via Armijo backtracking on the regularized
training objective. These mechanisms ensure robustness, but they also imply that overly
aggressive inexactness (large η) may lead to more conservative accepted step sizes and hence
slower reduction in BCE per unit of work.

Practical take-away. Overall, the experiments suggest that Inexact GGN–CG is most at-
tractive when either (i) curvature information substantially reduces outer iterations so that
the added CG work is offset (as observed on Pima), or (ii) additional curvature-solve work

Mohammad Jamhuri 119



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

yields substantively improved BCE and downstream metrics within a constrained outer-iteration
budget (as observed on Adult Income). On small and relatively benign problems (Breast Cancer),
first-order solvers remain strong competitors, and the extra CG work does not reliably translate
into better runtime or test performance.

6 Conclusion and Future Work
This paper investigated Inexact GGN–CG, a deterministic curvature-based method for minimizing
the mean binary cross-entropy (BCE) objective in full-batch logistic regression. The method
computes search directions by approximately solving a damped generalized Gauss–Newton system
using matrix-free conjugate gradient (CG) and enforces global descent via Armijo backtracking
line search on the regularized training objective. Regularization is selected once per dataset and
seed and shared across solvers; validation and test losses are reported as mean BCE without the
penalty term.

Experiments on three benchmark datasets reveal a clear effort–accuracy trade-off. On Pima
Indians Diabetes, curvature-informed steps reduce outer iterations and reach low-loss solutions
faster while maintaining competitive test performance. On Breast Cancer Wisconsin, first-order
baselines remain highly competitive and the extra CG work does not consistently yield runtime
or test-metric gains. On Adult Census Income, Inexact GGN–CG more reliably attains lower
validation and test mean BCE and improves downstream recall/F1, at the cost of increased
linear-algebra effort and wall-clock time.

Future work. Promising directions include adding preconditioning to reduce CG iterations,
using adaptive schedules for damping and inexactness to improve robustness, and aligning solver
budgets using work-based stopping criteria (e.g., a fixed budget of (Xv + X⊤u) products) rather
than a fixed outer-iteration cap. Extending the study to nonlinear models would further clarify
when inexact GGN strategies provide the best return on computational effort.

CRediT Authorship Contribution Statement
Mohammad Jamhuri: Conceptualization, Methodology, Software, Formal Analysis, Valida-
tion, Investigation, Data Curation, Writing–Original Draft Preparation, Visualization, Project
Administration. Silvi Puspita Sari: Methodology, Validation, Investigation, Writing–Review
& Editing, Visualization. Siti Amiroch: Conceptualization, Supervision, Writing–Review &
Editing. Juhari: Formal Analysis, Validation, Writing–Review & Editing. Vivi Aida Fitria:
Resources, Data Curation, Writing–Review & Editing.

Declaration of Generative AI and AI-assisted technologies
Generative AI was used during the preparation of this manuscript. Specifically, OpenAI ChatGPT
was used to assist with language editing, improving clarity and structure of the exposition, and
drafting non-substantive text based on author-provided technical content. The tool was not
used to generate or alter experimental data, and all algorithms, implementations, results, and
interpretations were produced and verified by the authors. Figures were generated using the
authors’ code (Python/Matplotlib).

Declaration of Competing Interest
The authors declare no competing interests.

Mohammad Jamhuri 120



Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

Funding and Acknowledgments
This research received no external funding. The authors thank their respective institutions for
providing computational facilities and support. The authors also acknowledge the maintainers of
the public Kaggle repositories used in this study for making the datasets available.

Data or Code Availability

The datasets analyzed during the current study are publicly available in Kaggle:123 The code
used to preprocess the data, run the experiments, and generate the figures is available from the
corresponding author upon reasonable request.

References

[1] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, 2nd ed. New York: Springer, 2009.
[3] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
[4] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International

Conference on Learning Representations (ICLR), 2015.
[5] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer, 2006.
[6] B. A. Pearlmutter, “Fast exact multiplication by the hessian,” Neural computation, vol. 6,

no. 1, pp. 147–160, 1994. doi: 10.1162/neco.1994.6.1.147

[7] N. N. Schraudolph, “Fast curvature matrix-vector products for second-order gradient
descent,” Neural computation, vol. 14, no. 7, pp. 1723–1738, 2002. Available online.

[8] J. Martens et al., “Deep learning via hessian-free optimization.,” in Proceedings of the
27th International Conference on Machine Learning (ICML), vol. 27, 2010, pp. 735–742.
Available online.

[9] A. Botev, “The gauss-newton matrix for deep learning models and its applications,” Ph.D.
dissertation, UCL (University College London), 2020. Available online.

[10] D. Buffelli et al., “Exact, tractable gauss-newton optimization in deep reversible archi-
tectures reveal poor generalization,” Advances in Neural Information Processing Systems,
vol. 37, pp. 133 541–133 570, 2024. doi: 10.48550/arXiv.2411.07979

[11] J. Zhao, S. P. Singh, and A. Lucchi, “Theoretical characterisation of the Gauss–Newton
conditioning in neural networks,” arXiv preprint arXiv:2502.18153, 2024. doi: 10.48550/
arXiv.2411.02139 arXiv: 2411.02139 [cs.LG].

[12] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney, “Adahessian: An
adaptive second order optimizer for machine learning,” in proceedings of the AAAI conference
on artificial intelligence, vol. 35, 2021, pp. 10 665–10 673. doi: 10.1609/aaai.v35i12.17275

[13] H. Liu, Z. Li, D. Hall, P. Liang, and T. Ma, “Sophia: A scalable stochastic second-order
optimizer for language model pre-training,” arXiv preprint arXiv:2305.14342, 2023. doi:
10.48550/arXiv.2305.14342Focustolearnmore

1https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
2https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
3https://www.kaggle.com/datasets/uciml/adult-census-income

Mohammad Jamhuri 121

https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/08997660260028683
https://dl.acm.org/doi/10.5555/3104322.3104416
https://books.google.co.id/books/about/The_Gauss_Newton_Matrix_for_Deep_Learnin.html?id=LxNgzgEACAAJ&redir_esc=y
https://doi.org/10.48550/arXiv.2411.07979
https://doi.org/10.48550/arXiv.2411.02139
https://doi.org/10.48550/arXiv.2411.02139
https://arxiv.org/abs/2411.02139
https://doi.org/10.1609/aaai.v35i12.17275
https://doi.org/10.48550/arXiv.2305.14342 Focus to learn more
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/adult-census-income


Inexact Generalized Gauss–Newton–CG for Binary Cross-Entropy Minimization

[14] D. Shin, D. Lee, J. Chung, and N. Lee, “Sassha: Sharpness-aware adaptive second-order
optimization with stable hessian approximation,” arXiv preprint arXiv:2502.18153, 2025.
doi: 10.48550/arXiv.2502.18153

[15] M. Jamhuri, M. I. Irawan, I. Mukhlash, M. Iqbal, and N. N. T. Puspaningsih, “Neural
networks optimization via gauss–newton based qr factorization on sars-cov-2 variant
classification,” Systems and Soft Computing, vol. 7, p. 200 195, 2025. doi: 10.1016/j.sasc.
2025.200195

[16] M. Jamhuri, “Optimasi model deep learning menggunakan metode gauss-newton terdis-
tribusi untuk prediksi mutasi sekuen protein spike virus sars-cov-2,” Ph.D. dissertation,
Institut Teknologi Sepuluh Nopember, 2025.

[17] M. Jamhuri, I. Mukhlash, and M. I. Irawan, “Performance improvement of logistic regres-
sion for binary classification by gauss-newton method,” in Proceedings of the 2022 5th
International Conference on Mathematics and Statistics, 2022, pp. 12–16. doi: 10.1145/
3545839.3545842

[18] X. Li, S. Wang, and Z. Zhang, “Do subsampled newton methods work for high-dimensional
data?” In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020,
pp. 4723–4730. doi: 10.1609/aaai.v34i04.5905

Mohammad Jamhuri 122

https://doi.org/10.48550/arXiv.2502.18153
https://doi.org/10.1016/j.sasc.2025.200195
https://doi.org/10.1016/j.sasc.2025.200195
https://doi.org/10.1145/3545839.3545842
https://doi.org/10.1145/3545839.3545842
https://doi.org/10.1609/aaai.v34i04.5905

	Introduction
	Problem Formulation and Background
	Binary cross-entropy objective
	Curvature structure and the generalized Gauss–Newton approximation
	Damping and the linear system underlying GGN steps

	Proposed Method: Inexact GGN–CG
	Damped generalized Gauss–Newton step
	Conjugate gradient and the inexactness criterion
	Step acceptance via backtracking line search
	Algorithm summary and basic guarantees
	Stopping conditions and practical parameterization
	Computational cost per iteration

	Experimental Setup
	Datasets
	Data splitting and preprocessing
	Solvers
	Regularization and hyperparameter selection
	Stopping criteria and iteration budgets
	Evaluation metrics and reporting

	Results and Discussion
	Cross-dataset trade-off and a hardware-agnostic work proxy
	Pima Indians Diabetes
	Breast Cancer Wisconsin
	Adult Census Income
	Seed-to-seed variability and robustness
	Damping and inexactness: empirical implications

	Conclusion and Future Work

