

MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi ISSN : 1978-161X(p); 2477-2550(e)

(Journal of Computer Science and Information Technology) Volume 15, No. 2(2023), pp 90-95
Received : October 9th 2023 ; Accepted : October 18th 2023 ; Avalaible Online : October 23th 2023

 Abstract— Continuous Integration and Continuous

Delivery (CI/CD) are methods used in agile development to

automate and speed up the process of building, testing,

and validating services. To support and simplify all

development and deployment processes, several methods

such as containerized and CI/CD automation are needed.

In this research, a DevOps Practice is carried out which

includes process integration, deployment, and testing

automatically using a tool called Jenkins. These tools are

open source automation servers to help the Continuous

Integration and Continuous Deployment process. Jenkins

is equipped with various open source plugins that can be

used to simplify and assist CI/CD automation and testing

processes. The implementation of CI/CD in performance

testing makes the testing process integrated, automated,

and can be run on a regular basis.

Index Terms— Automation, CI/CD, DevOps, Jenkins.

I. INTRODUCTION

I/CD is a method of delivering applications on a

regular basis to customers by bringing automation

into the application development phase. However,

organizations often face obstacles such as inefficiency,

implementation delays, sluggish behavior, and lack of

automation when practicing CI/CD. These constraints

can cause confusion between product delivery paths and

take up system resource capacity. Thus, emphasizing

the impact of human factors, CI/CD performance has

become a popular field in software development

research. In its application, CI/CD requires supporting

tools to facilitate the process. Such as Git which is used

as source code management and Jenkins as a tool to

support the automation process [1]

Often developers work and collaborate with teams to

complete their work assignments. Because the

challenges of working with a team require continuous

communication, and require good task resource

management, developers need supporting tools that are

used to perform resource management and interact with

each other. That way jobs that have a high load can be

handled easily using these supporting tools. In addition,

because of the need for developers who work in teams,

in the process of working on a task until the task is

completed, developers need to review each other so that

Manuscript received October 9, 2023. This work was supported in

part by Universitas Gadjah Mada.

Rismanda Kusumadewi is with the Departemen Teknik Elektro dan

Informatika, Universitas Gadjah Mada, Yogyakarta, Indonesia (email

rismandatyas@mail.ugm.ac.id)

 Ronald Adrian was with Departemen Teknik Elektro dan

Informatika, Universitas Gadjah Mada, Yogyakarta, Indonesia (e-

mail: ronald.adr@ugm.ac.id).

the work they are doing is sustainable and in line with

expectations. Therefore, source code management is a

supporting tool needed in the application system

development process.

Process automation is often used in the industrial

world to make work easier. With the automation

process, developers will find it easy to integrate on a

regular basis. This automation process is carried out

with the help of supporting tools that are integrated with

source code management. This automation process is

the most important part of the CI/CD process. With the

automation process, work that is done manually can be

done and completed quickly by the automation process.

In general, developers do testing in application

development before the application is sent to the

production environment to ensure whether the

application is feasible to launch and will not throw

errors when the application is running. One of these

tests is performance testing where this test has an

important role in the application development process.

This performance test includes stress point testing with

additional load methods, scalability testing, and stability

testing.

In this study, a performance analysis of the CI/CD

implementation will be carried out on a simple web

application. Analysis activities include performance

testing by utilizing an application called BlazeMeter. In

addition, to get data in real time, this research provides a

development by sending notifications through the Slack

application [2]. It is hoped that the automation process

for testing CI/CD performance in this study can be done

automatically and reduce the role of humans in testing.

In addition, this research analysis is expected to reduce

the problems of inefficiency, implementation delays,

and sluggish behavior when practicing CI/CD [3].

II. RESEARCH METHOD

 The research method carried out by the author can be

seen in the flow chart shown in Figure 1.

Rismanda Tyas Kusumadewi, Ronald Adrian

Performance Analysis of Devops Practice

Implementation Of CI/CD Using Jenkins

C

Fig. 1. Research Flowchart

MATICS Volume. 15, No. 2, September 2023

91

Based on the research flow chart, there are several

stages carried out in this study. The stages of the

research are as follows:

2.1 Design Stage

In this stage, a topology design is carried out which

will be used as a reference for performance analysis of

Web-app deployments on Jenkins. Figure 2. shows how

the topology is used for this study. The topology

describes the CI/CD pipeline process flow using

Jenkins. The CI/CD process starts from the developer

user building a python source code. Then by using Git,

the python source code is pushed to the GitHub

repository that has been created. Then the role of

Jenkins begins to perform code integration by checkout

python source code management and build

configuration. At the build stage, Jenkins integrates the

code that has been obtained from checkout to build an

image which, when executed, will become a container

containing the application to be run. All these processes

will be recorded by a Jenkins plugin which integrates

the build process with the real-time notification system

using the. This process from building source code to

running container is called CI/CD.

2.2 Installation and Configuration Stage

At this stage, the installation and configuration of the

tools that will be used in this research are carried out. It

can be seen that the installation and configuration steps

required are as follows:

2.2.1 Installing Docker Engine Community (Docker

Desktop)

The Docker Engine Community (Docker Desktop)

installation is used to unify applications with the

containerized method. An indication that the Docker

Desktop installation was successful is that you can pull

“helloworld”. The pull will display a message that the

Docker installation went smoothly.

2.2.2 Installation and Configuration Environment

The installation environment for Jenkins uses a

Jenkins image that has been pulled from the Docker

Image Registry. To be able to access Jenkins via

localhost, it must be ensured that the host has allowed

the associated port to be accessed from outside. The port

used for Jenkins environment is port 8181.

2.2.3 Jenkins Configuration

To run the pipeline CI/CD process. The first CI/CD.

Process is to pull the source code from the previously

created GitHub Repository. Then after making sure all

the configurations and source code are correct, then the

next step is to carry out the build process. The

indication of the build process was successful if the test

script execution did not experience an error. At each

stage of the build will create a trigger notification in

Slack that notifies the status of the build process.

2.2.4 Test Report Configuration

Configure the generating test report where the results

of the build process will be generated using a

performance test tool called BlazeMeter. Furthermore, a

summary report will be obtained for functional and

performance tests which are then analysed and

documented in a written report.

2.2.5 Configure Slack Notifications

Slack's notification configuration aims to generate

notifications and find out the initial status and whether

the final status of the job pipeline is successful or failed.

III. RESULT AND DISCUSSION

This study has a scope of testing to compare

performance tests between web-app deployments using

Jenkins services and conventional web-app deployments

via local machine terminals. The web-app integration

outputs a simple dynamic web application display that

displays the client's IP address when the web-app is

accessed.

3.1 Web-App Display Integration

The web-app integration results from the build on the

job pipeline. The job of the configured job pipeline is to

run the web-app integration via the build job. Figure 3 is

a sequential web-app integration process with job

pipelines.

Fig. 2. Design Research Topology

Fig. 3. Pipeline Sequencial History

MATICS Volume. 15, No. 2, September 2023

92

In the pipeline there are several stages that represent the

sub-tasks for the integration process. The green pipeline

indicates that the stages have a successful status. Within

each stage is displayed a time called a timestamp which

is the time span of the process from which the stages

took place. The jobs run by the pipeline are shown in

Figure 4. The build jobs and test jobs can be seen on the

Jenkins dashboard together with the job pipeline. To

view the detailed contents and configuration of each

job, click on the job name. The build job (sample-app)

is tasked with integrating Docker containers derived

from Docker web-app files so that web-apps can be run.

Meanwhile, the test job will verify whether the web-app

has been running successfully. Each job has a console

output that is used to view the job process when it is

run. The display of the results of the integration and

deployment of the web-app is shown in Figure 5. The

appearance of the web-app is generated by the css

configuration that has been created and integrated with

the html script. In the middle of the web-app display, it

can be seen that the accessing ip is 172.17.0.1 which is

the ip of the client who is accessing the web-app.

3.2 Results of Integration Performance Testing Using

Jenkins

Virtual

User
Time

Throughput

(hit/s)

Response Time

(ms)
Latency

1 18:54:40 2.3 39.09 15

2 18:54:50 68.6 20.69 8.74

3 18:54:55 78.9 29.8 8.86

4 18:55:00 84.7 37.7 16.76

5 18:55:05 83.2 46.13 23.06

6 18:55:10 82.8 58.05 26.62

7 18:55:20 96.3 67.65 32.77

8 18:55:25 107.8 65.7 31.56

9 18:55:30 128.9 63.24 30.54

10 18:59:20 202.4 48.9 23.81

Based on the test results obtained on the web-app

integration test using Jenkins, the data results obtained

represent the value of web-app integration performance

on increasing the number of concurrent users with a test

time of 6 minutes. It can be seen in table 1 regarding the

results of data throughput, response time, and latency,

these three parameters are related and correlated with

each other. When the throughput graph increases, the

response time and latency graphs will decrease.

Changes in the values of these three parameters can be

influenced by several factors, such as concurrent users,

machine tools used, traffic density, and the type of

connection or network used. Therefore, the values for

these three parameters have changed to the concurrent

users. It can be seen in table 1. throughput testing, the

results of the test values obtained mean that the average

throughput value on integration using Jenkins has a

fairly good ability or speed. This can be seen in the

average number of throughput generated by 93.59 hits/s

or it can be interpreted that the average HTTP requests

transferred are 93 requests per second. This means that

the level of ability to handle additional loads is quite

good. In addition, with the number of requests and

concurrent users accessing the web-app simultaneously,

the response time and latency values that can be seen in

table 1 are relatively close to 0, namely the average

response time is 0.047 s and the average delay value is

0.021 s. That way the response time and latency

conditions meet the ideal value which means that the

response time of request processing and delay in the

Jenkins integration process is very good.

It can be seen in table 2, the parameters used to test

engine health are network I/O, memory usage, CPU

usage, and connection. The data is retrieved based on

the test time range defined in the yaml file. This

parameter is part of determining the availability and

ability of the test engine to run tests. Machine health

testing is also needed to determine how many users the

machine can support. It can be seen in table 2 that there

was an increase after the engine test was run. This

increase in network I/O was caused by the number of

connections and the addition of users that occurred in

the testing process [4]. The resulting network I/O value

represents the amount of data that flows or is transferred

in the I/O network on the engine test used in this study.

Based on research [5], the supporting factor for network

I/O depends on the redirector on the network protocol

used. In addition, network I/O depends on how many

I/O operations are performed on the network and the

speed of the network connection.

Time Network i/o

(KB/s)

Memory (%) Cpu (%) Connection

18:54:40 1.38 54.2 91.8 3

18:54:50 98.61 54.8 76.5 3

18:54:55 179.86 55.8 73.3 5

18:55:00 159.54 56.2 83.2 6

18:55:05 193.4 56.3 84.2 8

18:55:10 238.88 56.4 76.8 8

18:55:20 242.76 56.4 68.2 9

Fig. 4. Job List

Fig. 5. Web-app View of Jenkins Integration

Table 1. Integration Performance Testing with Jenkins

Table 2. Engine Health Test

MATICS Volume. 15, No. 2, September 2023

93

18:55:25 183.03 56.5 78.7 9

18:55:30 277.52 57 65.5 12

18:55:56 239.41 59.2 95.7 10

18:56:14 179.24 60.2 94.7 10

18:56:34 369.33 61 65 11

18:56:45 477.21 61 57.1 10

18:56:59 460.32 61 60.8 10

18:57:06 362.57 61 69.4 13

18:57:22 369.76 61 73.5 9

18:58:22 341.31 61.1 64.5 13

18:58:49 498.3 61.1 61.9 5

18:59:20 443.62 61.1 62.1 15

18:59:36 222.37 61.1 76.9 13

19:00:48 211.11 52.4 38.4 2

Memory usage and CPU usage are also very

important to note. CPU and memory usage in the test

engine, it is not recommended to exceed the normal

threshold. To maintain the health of the machine, CPU

usage is not recommended to exceed 80% and memory

usage is not recommended to exceed 70% [6]. Memory

usage data in engine health testing on integration using

Jenkins is relatively constant with an average memory

usage of 56.7%. While the data from the CPU usage in

this test resulted in a relatively high data value at the

initial conditions of the machine performing the

integration. CPU usage in the integration process has

relatively increased with CPU usage by 80% and after

concurrent user conditions have been achieved, CPU

usage becomes relatively constant at 68.6%. It can be

concluded that the memory and CPU usage in testing

engine health on integration using Jenkins has a fairly

good value because after being in a stable condition,

memory and CPU usage does not exceed the normal

threshold.

3.3 Conventional Integration Performance Testing

Results

Table 3. Conventional Integration Performance Testing with Jenkins

The second performance test in this study was carried

out conventionally by using the terminal as a command

processing tool to perform web-app integration. This

test is carried out to determine the performance test

parameters which test parameters are material for

identification and evaluation of the performance of the

conventional integration process. Based on previous

research by [7]. Performance testing is conventionally a

test that generally runs on the basis of resources on

hardware or personal devices. In this research,

integration and deployment are conventionally done

using personal devices via terminals. All files are put

together in a folder and to call the python script, you

must first enter the folder. This conventional integration

process requires repeated configurations and is done

manually so that the process is quite time consuming.

Based on the test results obtained on conventional

web-app integration testing, the data results obtained

represent the value of web-app integration performance

on increasing the number of concurrent users with a test

time of 6 minutes. It can be seen in the flow chart of

throughput, response time, and latency, in table 3, these

three parameters are related and correlated with each

other. When the throughput graph increases, the

response time and latency graphs will decrease.

Changes in the values of these three parameters can be

influenced by several factors, such as concurrent users,

machine tools used, traffic density, and the type of

connection or network used. Therefore, the values for

these three parameters have changed to the concurrent

users. It can be seen in table 3 throughput testing, the

results of the test values obtained mean that the average

throughput value in conventional integration has good

capability or speed. This can be seen in the average

number of throughputs generated by 137.59 hits/s or it

can be interpreted that the average HTTP request

transferred is 137 requests per second. This means that

the level of ability to handle additional loads is quite

good. In addition, with the number of requests and

concurrent users accessing the web-app simultaneously,

the response time and latency values that can be seen in

table 3 are relatively close to 0, namely the average

response time is 0.0309 s and the average delay value is

0.014 s. That way the response time and latency

conditions meet the ideal value which means that the

response time of request processing and delay in the

conventional integration process is very good.

From the results of the engine health test, it was

found that the resource utilization carried out in

conventional web-app integration testing was not good.

This is evidenced by the data obtained from the memory

usage on the engine test, namely personal devices with

IDs that have relatively variable values due to the high

level of interference with the use of personal machines.

Based on research [5]. The supporting factors for

network I/O depend on the redirector on the network

protocol used. In addition, network I/O depends on how

many I/O operations are performed on the network and

the speed of the network connection.

Virtual

User
Time

Throughput

(hit/s)

Response Time

(ms)
Latency

1 4:40:40 5.1 19.65 10.1

2 4:40:45 49.3 17.2 8.2

3 4:40:50 130.2 11.17 4.56

4 4:41:00 176.8 18.01 7.93

5 4:41:05 180.1 24.23 10.2

6 4:41:10 184.4 26.2 12.12

7 4:41:15 173.5 30.7 16.72

8 4:41:20 165.5 39.6 18.47

9 4:41:30 119.7 70.79 34.85

10 4:44:00 190 51.98 25.1

Time Network i/o

(KB/s)

Memory (%) Cpu (%) Connectio

n

4:40:40 10.23 69.1 72.7 36

4:40:45 2.03 69.1 66.9 36

4:40:50 300.29 69.7 80.1 37

4:41:00 625.75 65.2 83.1 48

4:41:05 888.68 67.1 87.7 49

4:41:10 966.34 68.8 86.3 47

4:41:15 905.94 66.9 85.4 51

4:43:30 843.13 66.2 68.7 51

4:43:41 782.79 66.9 70.3 53

4:44:00 872.67 66.1 69.8 63

4:44:10 983.32 66.1 70.9 62

Table 3. Conventional Engine Health Test

MATICS Volume. 15, No. 2, September 2023

94

Memory usage and CPU usage are also very important

to note. CPU and memory usage on the test engine, it is

not recommended to exceed the normal threshold. To

maintain the health of the machine, CPU usage is not

recommended to exceed 80% and memory usage is not

recommended to exceed 70% [6]. In table 4 the data on

the results of memory usage in engine health testing on

conventional integration are relatively variable with an

average memory usage of 67.6%. While the data from

the CPU usage in this test results in a high data value at

the initial conditions of the machine performing the

integration. CPU usage in the integration process has

relatively increased with CPU usage by 80% and after

concurrent user conditions have been achieved, CPU

usage becomes relatively constant at 77.8%. Thus, it can

be concluded that the use of memory and CPU in testing

engine health on conventional integration has a fairly

good value because after being in a stable condition,

memory and CPU usage does not exceed the normal

threshold. CPU usage in the engine test has a value that

changes quite a bit at the beginning of the web-app

integration because the test engine used requires booting

and warm booting (start up section) as well as

interference with the use of other applications. so it

requires more CPU resources.

3.4 Comparative Analysis of Integration Performance

Using Jenkins and Conventional Integration

Performance

Based on the analysis of performance test results

between integration using Jenkins and conventional

integration. The throughput value in conventional

testing has a higher average value than the average

throughput value on integration using Jenkins. This

condition is caused by differences in network media and

devices used. The throughput value on the device is

relatively higher because the network media used

directly leads to the web-app integration process, while

the web-app integration uses Jenkins, the network media

used is divided by the use of Jenkins and Docker

containers. That way the throughput value will affect

the response time and latency values in the testing

process. The higher the throughput value, the lower the

response time and latency values.

In the engine health test, the test data on network I/O

and connections on conventional integration are higher

than those with integration using Jenkins. This condition

is caused by differences in the network media used and

the test engine used. Personal devices used for

conventional integration have higher specifications than

the Docker container which is used as a test engine for

the integration process using Jenkins so that the network

I/O and connection data obtained will be affected.

Whereas in resource testing, namely CPU and memory,

conventional integration produces higher data due to

interference with resource use combined with the use of

other applications running simultaneously.

Continuously high levels of CPU and memory usage

will make the device quickly experience system errors

and damage.

Based on the analysis data from the previous results,

Jenkins has continuous functionality and the integration

process using Jenkins can be done automatically and

only needs to be manually configured when configuring

the desired job for the first time. Whereas conventional

integration requires repeated configuration and is done

manually. So it can be said that the integration process

using Jenkins is more efficient than conventional

integration [8]. This is what makes CI/CD practices

widely used in industry, because CI/CD practices are

more efficient, effective, and cost-effective.

IV. CONCLUSION

CI/CD is a series of activities in DevOps practice that

simplify the application integration process and enable

applications to continue to integrate and deploy on an

ongoing basis. The integration process using Jenkins

makes it easy and time efficient for developers to do

application development because it uses an automation

system from the CI/CD process. Performance testing is

carried out to find out and ascertain whether a system

will not produce errors at run time and has a value

worth launching. In this study, the performance of web-

app integration using Jenkins has an interval of

difference that is not too far from conventional

integration with an average response time of 47.7 ms for

integration using Jenkins and an average response time

of 30.9 ms for conventional integration. However, the

performance of the engine test using a Docker container

gives healthier results than using a personal device with

an average memory usage value of 56.7% and cpu usage

of 68.6%.

Bandwidth in Jenkins integration provides a constant

value this is because the bandwidth value depends on

the bandwidth management system settings in Jenkins.

The value of throughput, response time, and latency

obtained is influenced by the number of concurrent

users. The higher the concurrent user value, the higher

the throughput value and the smaller the response time

and latency.

ACKNOWLEDGMENT

With the completion of this research, the author

would like to thank:

1. Mr. Dr. Ronald Adrian, S.T., M.Eng., as the

supervisor of the final project and the head of the

Internet Engineering Technology study program who

has been pleased to guide and support the author in the

work of the final project.

2. Various parties who cannot be mentioned one by

4:44:36 980.44 64.6 70.1 51

4:44:42 844.33 65.1 72.3 60

4:45:23 824.54 65.2 67.3 58

4:45:35 851.55 66.1 67.1 48

4:46:01 769.4 68.6 70.3 58

4:46:21 1025.18 67.8 72.1 47

4:46:45 766.83 65.2 67.3 47

MATICS Volume. 15, No. 2, September 2023

95

one for all the help and support in completing this final

report.

REFERENCES

[1] S. Mysari and V. Bejgam, “Continuous Integration and

Continuous Deployment Pipeline Automation Using Jenkins

Ansible,” Feb. 2020. doi: 10.1109/ic-ETITE47903.2020.239.

[2] J. Benjamin and J. Mathew, “Enhancing the efficiency of

continuous integration environment in DevOps,” IOP

Conference Series: Materials Science and Engineering, vol.

1085, no. 1, p. 012025, Feb. 2021, doi: 10.1088/1757-

899x/1085/1/012025.

[3] J. Mahboob and J. Coffman, “A Kubernetes CI/CD Pipeline with

Asylo as a Trusted Execution Environment Abstraction

Framework,” 2021 IEEE 11th Annual Computing and

Communication Workshop and Conference, CCWC 2021, pp.

529–535, Jan. 2021, doi: 10.1109/CCWC51732.2021.9376148.

[4] G. Lettieri, V. Maffione, and L. Rizzo, “A Study of I/O

Performance of Virtual Machines,” The Computer Journal, vol.

61, no. 6, pp. 808–831, Jun. 2018, doi:

10.1093/COMJNL/BXX092.

[5] Y. Luo, “Network I/O Virtualization for Cloud Computing,” IT

Professional, vol. 12, no. 05, pp. 36–41, Sep. 2010, doi:

10.1109/MITP.2010.99.

[6] B. Igli Tafa et al., “The Evaluation of Network Performance and

CPU Utilization during Transfer between Virtual Machines The

Evaluation of Network Performance and CPU Utilization during

Transfer between Virtual Machines The Evaluation of Network

Performance and CPU Utilization during Transfer between

Virtual Machines,” Type: Double Blind Peer Reviewed

International Research Journal Publisher: Global Journals Inc,

vol. 11, 2011.

[7] S. Jia, G. Juell-Skielse, and E. Uppström, “Integrating

Conventional ERP System with Cloud Services From the

Perspective of Cloud Service Type INTEGRATING

CONVENTIONAL ERP SYSTEM WITH CLOUD SERVICES:

FROM THE PERSPECTIVE OF CLOUD SERVICE TYPE”.

[8] J. Shah, D. Dubaria, and J. Widhalm, “A Survey of DevOps

tools for Networking,” in 2018 9th IEEE Annual Ubiquitous

Computing, Electronics and Mobile Communication Conference,

UEMCON 2018, Nov. 2018, pp. 185–188. doi:

10.1109/UEMCON.2018.8796814.

