
 Abstract—The traditional methods of rose cultivation 

often rely on manual irrigation practices, which may not 

always be precise or efficient. Additionally, the cost 

associated with implementing automated irrigation 

systems has been a limiting factor for many farmers. This 

research addresses these challenges by exploring the 

integration of Fuzzy Logic Controller (FLC) technology 

and low-cost electronic devices to develop an automated 

irrigation system tailored for rose cultivation, aiming to 

enhance precision and accessibility in agricultural 

practices. The study demonstrates the effectiveness of this 

approach in optimizing watering practices, showcasing a 

notable level of accuracy in providing irrigation 

recommendations. Moreover, the implementation of low-

cost electronic devices enhances the accessibility and 

feasibility of such smart irrigation systems. The research 

lays a foundation for advancements in precision 

agriculture, particularly in the domain of rose cultivation, 

with potential implications for broader agricultural 

practices. 

 
Index Terms—fuzzy logic controller, precision 

agriculture, rose automated watering, smart irrigation 

system.  

 

I. INTRODUCTION 

HE East Java region has emerged as one of the 

leading provinces in Indonesia in terms of rose 

flower commodities. According to data from the Central 

Statistics Agency, rose flower production in Indonesia 

reached 169 million stems in the year 2022, with a 

substantial 71.16% of this production originating from 

East Java [1]. This dominance can be attributed to the 

favorable conditions for rose cultivation, which thrive in 

regions with temperate climates (characterized by 

annual rainfall between 1500-3000 mm and humidity 

levels between 70-80%), especially in highland to 
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mountainous areas with elevations up to 1500 meters 

above sea level [2].    

The limitations inherent in the cultivation process of 

rose flowers, which necessitates adjustments to climatic 

conditions, compel farmers to engage in artificial 

climate modification. This allows for the continuation of 

cultivation even in lowland areas characterized by 

elevated temperatures. One effective measure involves 

regulating the soil moisture content to ensure that plants 

receive an adequate water supply [3].  

Irrigation constitutes a crucial mechanism that 

determines the level of harvest success [4]. The 

traditional irrigation system that has been employed 

thus far relies on the experience and knowledge of 

farmers to estimate the optimal timing for watering. 

This necessitates periodic checks by farmers on soil 

moisture conditions to ensure that plants do not suffer 

from water deficiency.  

In pursuit of greater time and operational cost 

efficiency, conventional irrigation systems have evolved 

into intelligent, Internet of Things (IoT)-based irrigation 

systems. This transition forms a integral component of 

the broader concept of smart agriculture. Smart 

agriculture leverages contemporary information and 

communication technology within the agricultural 

sector, offering substantial potential for heightened 

productivity and sustainable agricultural output through 

a more precise and efficient allocation of resources. The 

application of IoT in agriculture is geared towards 

empowering farmers with decision-making tools and 

automation technology, expediting the amalgamation of 

products, knowledge, and services to enhance 

production quality and ultimately yield greater profits. 

[5]. 

One of the concepts in smart agriculture is advanced 

through the utilization of a Fuzzy Logic Controller 

(FLC). The Fuzzy Logic Controller (FLC) constitutes an 

integral component of intelligent control systems rooted 

in classical control theory and artificial intelligence. It 

enables the incorporation of expert technological 

knowledge into logical processes, thereby delineating 

the parameters and variables to be regulated within a 

system. [6]. It offers significant advantages in 

addressing irrigation concerns, notably in terms of 

enhanced water utilization and optimized maintenance. 

Parameters employed for monitoring agricultural 

irrigation encompass factors like water quantity and 
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quality, meteorological conditions, soil attributes, 

moisture levels, and fertilizer application. [5]. 

There are three methodologies for constructing an 

FLC, namely the Mamdani, Takagi-Sugeno-Kang, and 

Tsukamoto approaches. The first is renowned for its 

utilization of linguistic variables, while the latter two 

rely on mathematical analysis. Nevertheless, all these 

methods necessitate the incorporation of both 

fuzzification and defuzzification stages. Given that the 

Tsukamoto approach facilitates the expression of 

scientific and technological expertise in terms of 

concepts rather than numerical values, it is the most 

fitting choice for the objectives of this study. [6]. 

While fuzzy control techniques have been employed 

in various agricultural contexts, there remains a need 

for studies focusing on their application in rose 

cultivation, particularly utilizing cost-effective 

electronic devices to enhance and optimize irrigation 

systems. [7]. Therefore, this research not only focuses 

on integrating the FLC concept into an automated 

irrigation scheme, but also provides recommendations 

for a cost-effective smart irrigation system.  

II. METHODOLOGY 

A. System Architecture 

Smart irrigation system yang diusulkan melalui 

penelitian ini menggunakan mikrokontroller NodeMCU 

ESP32 sebagai pemegang kendali system, mulai dari 

mendeteksi tingkat kelembapan tanah, mengatur katup 

air serta menjalankan algoritma Fuzzy Tsukamoto. 

Desain smart irrigation system ini mengadopsi 

mekanisme closed-loop control, which represents an 

alternative and efficient solution to traditional irrigation 

methods. The main task of these systems is to accurately 

determine the crop irrigation needs [8].  

Initially, the soil moisture sensor identifies the level 

of moisture in the soil and sends this information to the 

ESP32. The FLC then utilizes this data as input to 

produce output data specifying the duration of watering. 

Following this, the microcontroller triggers the relay, 

functioning as a connecting switch and power 

interrupter for the solenoid, which acts as the controller 

for the water valve. The microcontroller implements the 

FLC's computed results to activate the mist maker, 

enabling the automated watering process. To 

summarize, the operational process of the developed 

intelligent irrigation system is depicted in Fig. 1. 

 

B. Fuzzy Logic System 

Some opinions suggest that the Tsukamoto fuzzy 

inference is one of the irrigation system decision-

making methods designed in combination with the 

MATLAB application to determine the output of 

Tsukamoto's fuzzy analysis. In Fig.2 is a commonly 

known fuzzy logic system (FLS). It consists of three 

main conceps: fuzzification, fuzzy interference system 

(knowledge base & interference unit), and 

defuzzification [9]. 

 

1) Fuzzification 

Fuzzification is a crucial step in applying fuzzy logic 

to systems like a rose irrigation system. It involves the 

process of converting crisp, precise input values into 

fuzzy linguistic terms or labels, which represent the 

qualitative assessment of these values [10]. This step 

allows us to deal with imprecise or uncertain 

information regarding factors like soil moisture levels, 

weather conditions, and plant water requirements. 

We use two linguistic labels, that are dry and wet to 

categorize the soil moisture into qualitative terms. These 

labels are associated with membership functions that 

define the degree of membership of a given value to 

each linguistic term. This means that a specific soil 

moisture value could partially belong to multiple labels 

[11].  

In order to obtain the right decision, the triangular 

and trapezoidal membership functions represent a 

typical choice in the proposed system. Equation (1) and 

(2) shows the structure of a triangular and trapezoidal 

adhesion for a two-value fuzzification system. These 

equations represent fuzzy membership functions for the 

linguistic terms "dry" and "wet" with respect to a 

variable . These functions are used in fuzzy logic to 

quantify the degree of membership of a given value of  

to the sets "dry" and "wet". The membership value 

varies between 0 (indicating no membership) and 1 

(indicating full membership) [12]. 

 

     (1) 

 

For dry: if  is greater than or equal to 70, the 

membership value is 0. If  is in the range between 55 

and 70, the membership value is given by , which 

represents a linear decrease in membership from 1 to 0  
 

Fig. 1. Proposed architecture [17] 

 
 

Fig. 2. Fuzzy Logic System [17] 
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as  increases from 55 to 70. If  is less than or equal to 

55, the membership value is 1, indicating full 

membership [13]. 

 

     (2) 

 

For wet: if  is less than or equal to 55, the 

membership value is 0. If  is in the range between 55 

and 70, the membership value is given by , which 

represents a linear increase in membership from 0 to 1 

as  increases from 55 to 70. If  is greater than or 

equal to 70, the membership value is 1, indicating full 

membership [13]. 

In summary, these membership functions describe 

how "dryness" and "wetness" are quantified based on 

the value of . The functions provide a smooth 

transition in membership values as  changes within the 

specified ranges. Fig.3 shows the membership function 

of the fuzzy logic controller inputs in this study [13]. 

 

In the Tsukamoto fuzzy model, membership 

functions play a pivotal role in quantifying linguistic 

variables like "dryness" and "wetness". These functions 

graphically depict the degree to which a given input 

value belongs to a particular linguistic category. In the 

case of dryness, the membership function typically 

starts at 1 for low values of the variable (indicating high 

dryness) and gradually decreases to 0 as the value 

increases. This reflects the gradual transition from 

complete membership to non-membership as dryness 

diminishes. Conversely, for wetness, the membership 

function starts at 0 and ascends to 1, signifying the shift 

from non-membership to full membership as wetness 

intensifies. The curves of these membership functions 

are crucial in defining the behavior of fuzzy rules and, 

subsequently, in making decisions within a fuzzy logic 

system. They serve as a bridge between crisp, numerical 

data and linguistic variables, enabling the system to 

process and respond to imprecise information in a 

meaningful way [10]. 

 

2) Fuzzy Rule Base (Knowledge Base) 

The Fuzzy Rule Base, also known as the Knowledge 

Base in fuzzy logic, is a critical component of a fuzzy 

logic system. It consists of a collection of rules that 

describe the relationship between inputs and outputs in a 

fuzzy system. These rules are typically expressed in the 

form of conditional statements that link linguistic 

variables. Each rule comprises two main parts: an 

antecedent (or premise) and a consequent [10]. 

Antecedent (Premise) establishes the conditions or 

criteria based on which a decision or action is made. It 

involves linguistic variables and their corresponding 

membership functions, representing the input values of 

the system. While consequent specifies the resulting 

action or output based on the conditions set in the 

antecedent. It involves linguistic variables and their 

corresponding membership functions representing the 

output values of the system [13].  

In this study, we consider sensor condition as main 

premises in building the rules: dry and wet. We used 

two soil sensors that placed in different places in order 

to get data more accurately. We structured the sensor 

conditions as input into four rules that generate output 

in the form of irrigation duration classified as either 

long or short. This approach allows for a nuanced 

response to varying soil moisture levels, ensuring an 

appropriate and timely watering regimen for the plants. 

This rule is based on discussions with experts (rose 

farmers association) in the Batu, Indonesia. Table 1 

represents the knowledge base in this study.  

 

3) Defuzzification 

Defuzzification is a crucial step in fuzzy logic 

systems where the final fuzzy output is transformed into 

a crisp, numerical value that can be used for practical 

control or decision-making. In other words, it converts a 

fuzzy set or fuzzy value into a specific, actionable 

response [10]. 

We used center weighted average method in 

defuzzification process, which involves taking a 

weighted sum of the output values based on their 

membership values. The weights are determined by the 

membership values of each fuzzy value, as shown in 

Equation (3) [14].  

 

         (3) 

 

Where  represents the final defuzzified value, 

which is essential for making practical decisions or 

control actions. The variable  refers to the number of 

fuzzy sets or rules contributing to the output. The 

coefficients   represent the membership values 

associated with each rule, indicating the level of 

influence or importance of that rule's output.  denotes 

the individual fuzzy outputs generated by each rule. The 

Table 1. The Fuzzy Rules for Rose Watering System 

Rules 
Soil Sensor 1 

Level 

Soil Sensor 

Level 2 

Watering 

Duration 

1 Dry Dry Long 

2 Dry Wet Short 

3 Wet Dry Short 

4 Wet Wet Short 

 

 
Fig. 3. Membership Function Input 
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numerator calculates the weighted sum of these fuzzy 

outputs, while the denominator normalizes the result by 

dividing by the total weight. This ensures that the final 

defuzzified value accurately reflects the overall 

contribution of the rules [10]. 

The output, which represents the suggested watering 

duration, is obtained by taking the weighted average of 

the fuzzy values produced by the rules. We determined 

values between 0 and 200 seconds for watering 

duration, which is represented in Fig. 4. This allows for 

precise control actions in response to varying input 

conditions, making Tsukamoto's method a valuable tool 

in fuzzy logic applications. 

 

In the Tsukamoto method, the membership function 

for a fuzzy set is typically represented using a linear 

function [13]. For this case, we used 2 types of linear 

function, that are ascending (long) and descending 

(short). The equation for both linear membership 

functions in the Tsukamoto method can be expressed as 

Equation (4) and Equation (5).  

 

   (4) 

 

This membership function behaves as follows: for  

values less than or equal to 100, the membership grade 

is 0, signifying a weak association with the set. When  

falls within the range of 100 to 200, the membership 

grade is determined by the linear function  , 

where 100 and 200 are parameters representing the 

lower and upper bounds of this range, respectively. This 

means the membership grade gradually increases from 0 

to 1 as   moves from 100 to 200, indicating a 

strengthening association with the "ascending" set. 

Finally, for  values greater than or equal to 200, the 

membership grade is a full 1, indicating a strong 

association with the set. 

 

   (5) 

 

This membership function behaves as follows: for  

values between 100 and 200 (inclusive), the 

membership grade is given by , which denotes a 

linear decrease in membership grade as  moves from 

100 to 200. This indicates a weakening association with 

the "descending" set within this range. For  values 

greater than or equal to 200, the membership grade is 

set to 0, indicating no membership with the set beyond 

this point. 

 

III. RESULTS AND DISCUSSION 

In order to assess the performance of the Fuzzy 

Tsukamoto model in optimizing watering durations for 

our rose cultivation system, a series of experiments 

were conducted. For the purpose of initial evaluation, 

dummy data was generated to simulate varying soil 

moisture levels for both soil sensors. 

 

A. Fuzzy Logic Procedures 

The proposed work has been programmed using 

MATLAB simulation tool and Arduino programming. 

Soil moisture Arduino module hygrometer YL-69 is 

used to collect the information about the humidity level. 

It is used because of cost effectiveness and fast response 

while monitoring the temperature and humidity data. 

Correspondingly, this sensor also used to collect the 

data regarding the humidity content of soil in the 

agricultural field [15]. 

As an illustrative instance, we employed dummy data 

for the initial trial: sensor 1 registered a reading of 56, 

while sensor 2 recorded 60. Subsequently, we 

conducted computations utilizing our Fuzzy Tsukamoto 

modelling approach to ascertain the output, which 

manifests in the form of the rose watering duration. 

 

1) Fuzzification: the process of determining membership 

degrees for each sensor is pivotal. For Sensor 1, the 

computed results yield  and 

. Meanwhile, for Sensor 2, the 

computed values indicate  and 

.  

2) Fuzzy rule base: processes the crisp input values, 

mapping them to fuzzy linguistic values through 

membership functions, and subsequently applies 

fuzzy rules to generate the output. We used 4 rules 

(see Table I) to generate the output.  

3) Defuzzification: process of converting a fuzzy set or 

fuzzy output into a decision for controlling the 

systems. This is achieved by determining the value 

of   and for each pre-established rule. The 

defuzzification process are defined below.  

[R1] IF S1=dry AND S2=dry THEN duration=LONG 

 

   ;  ;  

 
Fig. 4. Membership Function Output 
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[R2] IF S1=dry AND S2=wet THEN duration=SHORT 

 

     ;  ;  

[R3] IF S1=wet AND S2=dry THEN duration=SHORT 

 

   ; ;  

[R4] IF S1=wet AND S2=wet THEN duration=SHORT 

 

     ;  ;  

Final defuzzied value computation using Equation (3):   

 

 

 

In this scenario, Sensor 1 and Sensor 2 provided 

respective readings of 56 and 60, indicating 

measurements related to specific environmental 

parameters. These readings were then processed through 

a fuzzy Tsukamoto-based automatic watering system. 

The system's output, represented by the Z value of 

174.94, corresponds to the recommended watering 

duration. This means that, based on the combined input 

from both sensors and the fuzzy logic algorithm, the 

system suggests a watering duration of approximately 

174.94 second. This application of fuzzy logic in 

automatic watering systems allows for nuanced, 

adaptive decisions, taking into account multiple sensor 

inputs to optimize the watering process for the specific 

conditions detected by the sensors. 

 

B. Performance Evaluation 

The proposed work has been programmed using 

Arduino programming in NodeMCU ESP32 

Microcontroller. Soil moisture module hygrometer YL-

69 is used to collect the information about the humidity 

level. It is used because of cost effectiveness and fast 

response while monitoring the temperature and 

humidity data. Correspondingly, this sensor also used to 

collect the data regarding the humidity content of soil in 

the agricultural field [15]. 

A comprehensive experimental setup was established, 

to facilitate accurate data collection and assessment of 

the model's performance. Both soil moisture sensors 

were strategically placed at varying depths within the 

rose bed to provide real-time measurements of soil 

moisture content. We created some conditions in order 

to make humidity data variation, then evaluated the 

FLC's ability to interpret input data, and generate 

appropriate watering decisions. 

The performance evaluation of the Fuzzy Tsukamoto 

model involved a comparison between calculated 

watering recommendations generated by the system and 

the actual water applied under real-world conditions. 

The results obtained from the experiment are 

summarized at Table 2. 

Overall, it is evident that the model tends to provide 

recommendations that are generally in close proximity 

to the actual amounts of water applied. This is 

particularly notable in trials 2, 3, and 4, where the 

model's suggestions were very closely aligned with the 

real-world application. This indicates a relatively high 

level of accuracy in the model's calculations, suggesting 

that it has a good grasp on the optimal watering 

requirements for the rose plants in these specific 

scenarios. 

However, as observed in trials 6 and 7, there were 

instances where the model's recommendations 

significantly deviated from the actual watering amounts. 

In these cases, the model appeared to underestimate the 

required water, resulting in a notable shortfall in the 

applied volume. This discrepancy could potentially be 

attributed to factors not accounted for in the model's 

calculations, such as variations in soil type or localized 

environmental conditions. 

Conversely, trials 5, 8, 9, and 10 demonstrated cases 

where the model's recommendations exceeded the 

actual water applied. This suggests that in these 

instances, the model may have been overly cautious, 

potentially leading to slight over-watering. This 

tendency could be indicative of a conservative approach 

in the model's decision-making process, which could be 

further refined to achieve an optimal balance between 

water conservation and plant hydration. 

To quantitatively assess the accuracy of these 

recommendations, the Mean Absolute Percentage Error 

(MAPE) was computed. This statistical measure offers a 

comprehensive evaluation, quantifying the average 

percentage deviation between the calculated and actual 

values. The Mean Absolute Percentage Error (MAPE) is 

calculated using the Eauqtion (6) [16]: 

 

    (6) 

 

Where represents the actual value (real 

condition), represents the forecasted value 

Table 2. Comparative Results of Proposed System 

Soil 

Sensor 

1 Level 

(0) 

Soil 

Sensor 

2 Level 

(0) 

Watering Duration (second) 
Absolute 

Error 
Calculation 

Real 

Measurement 

35 37 200 198.53 0.009934 

40 50 200 196.44 0.020149 

42 48 200 197.52 0.020756 

50 56 193.06 197.48 0.024884 

56 60 170.22 179.56 0.022854 

75 78 100 77.78 0.275381 

70 72 100 76.66 0.274852 

63 65 160.15 123.43 0.281579 

60 60 168.3 148.99 0.141492 

59 60 168.94 155.32 0.088820 

Total 1.20486 
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(calculation data) and is the total number of data 

points. Given the calculation data and real conditions 

from Table 2, we get the MAPE value defined as 

follows.  

 

 

Our proposed system gives error result 

approximately 12.05%, indicates a valuable quantitative 

measure of the model's performance, enabling growers 

to make informed decisions about implementing our 

scheme in their cultivation. With ongoing refinement 

and calibration, it's likely that the model's accuracy 

could be even further improved, potentially leading to 

more precise watering recommendations in practical 

applications.  

IV. CONCLUSION  

This research endeavors to advance the field of smart 

agriculture, specifically in the domain of rose 

cultivation. By integrating the Fuzzy Logic Controller 

(FLC) concept into an automated irrigation scheme, we 

have demonstrated the potential for enhancing water 

management practices in a cost-effective manner. The 

utilization of low-cost electronic devices in conjunction 

with the FLC has shown promise in optimizing 

irrigation systems, thereby offering a viable solution for 

farmers seeking to improve their cultivation practices. 

These findings underscore the significance of 

harnessing advanced control techniques and affordable 

technology in bolstering agricultural sustainability and 

productivity. As smart agriculture continues to evolve, 

this study contributes a practical framework for the 

implementation of intelligent irrigation systems, not 

only in rose cultivation but potentially in various other 

agricultural contexts as well. 

To further advance this research, several avenues for 

future exploration are recommended. Firstly, a 

comprehensive field trial encompassing a diverse range 

of environmental conditions and soil types would 

provide a more robust assessment of the FLC-based 

irrigation system's performance. Additionally, 

incorporating real-time data from weather forecasts and 

soil sensors could enhance the model's predictive 

capabilities. Moreover, investigating the potential 

integration of other advanced control techniques, such 

as machine learning algorithms, could lead to even more 

refined and adaptable irrigation systems.    
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