
 Abstract— The significance of occupational health in 

culinary settings, particularly kitchens, is paramount due to 

the inherent health risks associated with these 

environments. This study addresses the necessity of 

maintaining optimal environmental conditions, such as 

temperature, humidity, and air quality, in kitchens to 

safeguard worker health. To achieve this, the study 

advocates for the implementation of sophisticated 

ventilation and air conditioning systems. The core focus of 

the research is the integration of Internet of Things (IoT) 

technology and advanced machine learning algorithms for 

the real-time monitoring and assessment of kitchen 

environments. Specifically, the study fine-tunes and 

evaluates several classification algorithms, including 

Decision Trees (DT), Support Vector Machines (SVM), and 

K-Nearest Neighbors (KNN), aiming to accurately predict 

and manage kitchen conditions. The comparative analysis 

reveals that the DT algorithm outperforms others, 

demonstrating exceptional accuracy (97.41%), precision 

(95.35%), and proficiency in identifying relevant scenarios 

(88.57%). In contrast, the KNN algorithm registers the 

lowest accuracy (75.12%), while the SVM algorithm, 

despite being the least precise (86.55%), shows a relatively 

higher capability in recognizing pertinent cases (86.55%) 

compared to KNN (72.33%). This study underscores the 

potential of integrating IoT and machine learning in 

enhancing occupational health standards in kitchen 

settings. 

 
Index Terms— Air quality, Condition monitoring, 

decision tree, Humidity,  internet of things, Occupational 

health, Temperature. 

I. INTRODUCTION 

N In the domain of industrial manufacturing, the 

ergonomics of the workplace, encompassing the 

design of human-machine interfaces and the 

configuration of workstations, is a prevalent concern. 

This is addressed by Occupational Health and Safety 

(OHS) regulations that are instituted to ameliorate 

worker conditions within these environments [1]. It is 

imperative that the design of such workplaces is 

congruent with human physiological and psychological 

characteristics, as well as the nature of the tasks executed, 

to diminish occupational hazards, bolster worker well-
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being and safety, and curtail the probability of human 

error. Specifically, in culinary settings, the conditions 

under which kitchen staff operate particularly during 

prolonged cooking tasks have a substantial impact on 

their health. The microclimate of a kitchen, defined by 

variables such as ambient temperature, relative humidity, 

and air quality, warrants close scrutiny [2]. Thermal 

conditions falling outside a comfortable range can 

precipitate health issues ranging from hypothermia at one 

extremity to dehydration and heatstroke at the other. 

Fluctuations in humidity levels may foster microbial 

growth, adversely affecting dermatological and 

respiratory health [3]. Moreover, air quality that fails to 

meet established standards can pose significant health 

risks, often attributable to diminished oxygen saturation 

and exposure to noxious gases, such as LPG. 

In response to these challenges, proactive monitoring 

and regulation of air turnover through the 

implementation of ventilation and air conditioning 

systems are vital to modulate the kitchen's thermal 

environment. The deployment of the Internet of Things 

(IoT) is instrumental in facilitating real-time surveillance 

of these conditions through an array of sensors that 

monitor temperature, humidity, and air quality indices 

[4]. The integration of such IoT systems is essential in 

ensuring effective air exchange in high-activity culinary 

spaces, necessitating the inclusion of smoke and steam 

extraction systems as part of the cooking infrastructure. 

The establishment of optimal ambient conditions is not 

only conducive to maintaining an adequate 

environmental quality but is also essential for 

safeguarding the health of kitchen personnel. To this end, 

an automated monitoring system has been engineered to 

regulate ventilation and air conditioning, thus laying the 

groundwork for a 'smart kitchen' paradigm that 

underscores occupational health [5]. 

Algorithms are integral to the operational accuracy and 

precision of monitoring systems. In this realm, the 

decision tree algorithm emerges as a robust tool for 

predicting real-time conditions. Its principal advantage 

lies in deconstructing intricate decision-making 

processes into simpler, more interpretable components, 

thereby facilitating an enhanced comprehension of 
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problem-solving strategies among decision-makers. 

Furthermore, decision trees are instrumental in data 

exploration, unearthing hidden correlations between 

input variables and their respective target outcomes [6]. 

The amalgamation of data examination and modeling 

makes decision trees particularly effective in the initial 

stages of modeling, extending through to the culmination 

of the final model. This versatility has garnered 

widespread utilization in process monitoring system 

research. An exemplar of this application is found in the 

work of Rajeswari et al., where the C5.0: Advanced 

Decision Tree (ADT) algorithm was employed to analyze 

soil characteristics for optimizing crop selection and 

sowing times. The outcomes of this research have been 

applied in the creation of Designing Smart Information 

System (DSIS) applications. Another noteworthy study 

involves the design of a traffic monitoring system, 

integrating the C5.0 decision tree algorithm with time-

series analysis. Utilizing the KDD Cup 99 dataset for 

simulation and comparative testing against conventional 

traffic monitoring methodologies, the system 

demonstrated a notable efficacy in monitoring 

unanticipated attacks, achieving an accuracy rate of 96%. 

This research exemplifies the applicability and 

effectiveness of decision tree algorithms in diverse 

monitoring scenarios [7]. 

Recent advancements in research have leveraged the 

integration of Internet of Things (IoT) technology for 

environmental and health monitoring applications. 

Apriandy et al. explored the deployment of an IoT-based 

wireless system for monitoring and predicting water 

quality in public swimming pools, employing the ID3 

(Iterative Dichotomiser 3) algorithm. The system 

exhibited impeccable performance with a 100% accuracy 

rate in its predictive capabilities. In a separate study, Binu 

et al. developed a smart healthcare monitoring system 

focused on children, integrating Apache Ranger and the 

C4.5 decision algorithm for secure data transmission and 

child behavior analysis. The empirical results 

underscored the C4.5 algorithm's enhanced accuracy 

over the ID3 algorithm in this context [8]. 

Furthermore, Bambang et al. utilized the C4.5 

algorithm for air quality classification at sensor nodes, 

employing entropy values and information gain for 

decision tree construction and rule set formulation. This 

approach yielded an 85.71% accuracy rate, 81.82% 

precision, 60.00% sensitivity, and 92.31% specificity in 

air quality data classification. Additionally, Basuki et al. 

applied the C4.5 algorithm within a decision tree 

framework for real-time gas condition monitoring in a 

power diagnostic application. This was integrated into a 

SCADA system, demonstrating a prediction accuracy of 

95.54% using training data [9]. 

The present research aims to enhance occupational 

health in kitchen environments by developing a smart 

kitchen monitoring system that integrates IoT with 

decision tree algorithms. This system is designed to 

continuously monitor key environmental parameters 

such as temperature, humidity, and air quality. It employs 

automated actuators triggered by sensor data, with 

decision tree algorithms (ID3, C4.5, and C5.0) being 

evaluated to determine the most effective model for 

predicting kitchen conditions based on the human health 

index. The goal is to establish the most efficient 

classification model for implementation in the smart 

kitchen monitoring system, contributing to improved 

workplace health and safety. 

II. THEORETICAL FOUNDATION 

A. Machine Learning 

In the domain of artificial intelligence, machine 

learning exemplifies an innovative paradigm that utilizes 

algorithmic strategies and data analysis to emulate the 

iterative learning process of humans, thereby augmenting 

the decision-making acumen of computational models 

[10]. Classification, a pivotal machine learning 

technique, entails the training of algorithms to 

systematically categorize data into distinct classes based 

on learned patterns from feature sets. This methodology 

is imperative in a spectrum of applications, 

encompassing spam detection, image classification, and 

medical diagnostic processes. The operational 

framework of classification involves the initial training 

phase on a pre-labeled dataset followed by the predictive 

phase, where the trained model extrapolates the learned 

patterns to classify new datasets. Among the plethora of 

classification algorithms, Support Vector Machines 

(SVM), K-Nearest Neighbors (KNN), and Decision 

Trees (DT) are noteworthy. SVM is proficient in 

delineating high-dimensional datasets through optimal 

hyperplane separation [11] [12] [13]. In contrast, KNN 

predicates its classification on the proximity and voting 

majority of the closest data points, whereas DT is 

renowned for its transparent decision-making process, 

facilitated by an interpretable tree-like structure that 

sequentially segments the data based on feature entropy 

and information gain, thereby solidifying their roles as 

indispensable instruments for predictive modeling in 

various scientific and industrial sectors. The comparison 

of each algorithm is shown in Table I. 

TABLE I.  COMPARISON OF MACHINE LEARNING ALGORITHMS 

 SVM KNN DT 

Type of 
data 

Numerical, 
continuous 

Numerical, 
categorical, 
binary 

Numerical and 
categorical 

Speed Slow with large 
datasets 

Slow with large 
datasets (search 
based) 

Fast, even with 
large datasets 

Technic Hyperplane 
separation 

Majority voting 
of k-nearest 

Feature value 
splits 

Formula w * x + b = 0 No explicit 
formula 

Entropy & 
Information 
Gain 

B. Decision Tree 

The Decision Tree (DT) algorithm, a cornerstone in 
the repertoire of machine learning techniques, leverages 
the concept of information entropy to facilitate the 
decision-making process. Information entropy, as 
delineated by the equation [14]. 
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H(S) = −∑i = 1np(si)log2(p(si))               (1) 

 

serves as a metric for the disorder or randomness 
inherent in a dataset. The primary aim in employing the 
DT algorithm is the systematic reduction of this entropy, 
which is achieved by partitioning the dataset based on 
specific attributes. 

Gain(S, Ai) = H(S) − ∑
|Si|

|Si|

n

α∈𝐀i

H(Sα)               (2) 

In this context, the significance of information gain is 
paramount. It measures the anticipated decrease in 
entropy and consequent increase in purity following a 
dataset split based on a chosen attribute. Entropy, denoted 
as  H, symbolizes the essential information required for 
accurately classifying an element within the dataset. The 
term in the entropy formula represents the optimal code 
length in bits needed to encode a label, based on its 
probability. Through the strategic selection of attributes 
that offer the maximum information gain at each decision 
node, the Decision Tree (DT) algorithm effectively 
constructs a model. This model minimizes the number of 
necessary inquiries to reach a definitive classification, 
thereby optimizing the efficiency of the predictive model. 

C. Support Vector Machine 

The Support Vector Machine (SVM) algorithm is a 

prominent and flexible tool in machine learning, highly 

regarded for classification and equally capable in 

regression scenarios. It specializes in processing 

numerical and continuous data types, effectively 

identifying a hyperplane in an N-dimensional space 

(where N indicates the number of features) to distinctly 

classify data points into various groups. The crux of 

SVM's methodology lies in maximizing the margin, 

which is the distance between the nearest data points of 

each class and the hyperplane, an approach that 

significantly boosts classification accuracy. The 

hyperplane is mathematically represented by the 

equation  w × x + b = 0, where w is the weight vector, 

and b is the bias. In cases where the data is not linearly 

separable, SVM utilizes the kernel trick to project the 

data into a higher-dimensional space, enabling effective 

separation [15]. This technique supports various kernel 

functions like polynomial, radial basis function (RBF), 

and sigmoid, thus adeptly handling intricate datasets. 

However, SVM's performance may diminish with very 

large datasets due to its computational intensity in these 

scenarios. Despite this, its ability to prevent overfitting, 

especially in high-dimensional spaces, makes SVM an 

invaluable asset in dealing with complex, small- to 

medium-sized datasets in diverse machine learning 

applications. 

D. K-Nearest Neighbors 

K-Nearest Neighbors (KNN) algorithm, a staple in 

machine learning, is employed for both classification and 

regression tasks, renowned for its straightforward yet 

effective approach, particularly in situations with non-

linear decision boundaries. KNN functions as an 

instance-based or lazy learning algorithm and is adept at 

handling various types of data, including numerical, 

categorical, and binary [16]. It determines the 

classification of a new data point by identifying the 'K' 

closest data points (nearest neighbors) within the training 

set, using distance metrics like Euclidean, Manhattan, or 

Hamming distance. The final classification is derived 

from the majority vote among these 'K' nearest neighbors, 

while in regression, it is based on their average. One key 

characteristic of KNN is that it doesn't rely on an explicit 

formula for its operation. However, a significant 

drawback of this method is its reduced efficiency with 

large datasets, as it becomes computationally intensive 

due to the necessity of performing distance calculations 

for each new prediction. The choice of 'K' is critical; a 

smaller 'K' makes the algorithm sensitive to noise, 

whereas a larger 'K' tends to over-smooth the decision 

boundary. Despite these challenges, KNN's ability to 

adapt to complex and diverse data patterns without 

assuming any specific distribution makes it a valuable, 

versatile tool in the machine learning toolkit [17]. 

E. Industrial Kitchen Design 

Effective ventilation systems are crucial in 
commercial kitchens for maintaining air balance, a 
process that necessitates the equilibrium between the 
expulsion of smoke, oil, and steam and the influx of fresh, 
clean air. High-traffic kitchen environments mandate 
controlled ventilation and air conditioning to ensure 
optimal air quality [18]. The kitchen exhaust system 
emerges as a pivotal component during cooking activities, 
as it mitigates the risk of atmospheric pollution from 
smoke, oil, and steam, factors that can adversely impact 
employee health. The implementation of efficient airflow 
systems in commercial kitchens is essential, considering 
the human health index. This entails the systematic 
extraction of exhaust air coupled with the introduction of 
clean air to establish stable airflow patterns within the 
kitchen space. Figure 1 illustrates the design of an 
industrial kitchen equipped with a monitoring system, 
highlighting the critical aspects of ventilation and air 
management [19]. 

F. Exhaust Systems 

The integration of exhaust fans with Ventilation Air 
Conditioning systems forms a co-dependent exhaust 
mechanism in commercial kitchens. These systems are 
designed to function synergistically, ensuring optimal 
performance based on predefined parameters. Their 
primary effectiveness lies in the removal of heat, 
moisture, and gases emanating from cooking activities. It 
is imperative for the exhaust system to be strategically 
positioned above the cooking equipment, facilitating the 
efficient capture and treatment of air pollutants generated 
during the cooking process [20]. The exhaust fan plays a 
crucial role in expelling waste air, thereby aiding in the 
regulation of temperature, humidity, and gas levels within 
the kitchen environment. A critical aspect of this system 
is interlocking, which ensures a seamless connection 
between ventilation hoods and gas appliances. This setup 
entails the automatic activation of the air system when the 
gas supply is turned on, adhering to industrial regulations 
that mandate active ventilation concurrent with the 
operation of cooking equipment. Consequently, all 
exhaust gases are required to be channeled into the 
atmosphere through designated exhaust vents, 
simultaneously allowing the influx of clean air, a process 
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crucial for maintaining a healthy and safe kitchen 
environment [21]. 

III. RESEARCH METHODOLOGY 

A. System Design 

The kitchen's infrastructure incorporates a 
meticulously designed ventilation and air conditioning 
system, specifically implemented to monitor various 
environmental parameters. In this study, the human health 
index is quantified based on three critical parameters: 
temperature, humidity, and air quality. The quantification 
of these parameters in relation to health values is 
systematically tabulated in Table II, providing a 
comprehensive overview of their impact on the overall 
health index in kitchen environments.. The level of health 
value is shown in Table II. 

TABLE II.  LEVEL OF HEALTH VALUE 

No. Parameter Unit Standard rate 

1 Temperature oC 18 - 30 

2 Humidity %Rh 40 - 60 

3 Carbon Dioxide ppm 1000 

4 Carbon Monoxide ppm 9.00 

  

 

Fig. 1. System Architecture Design 

Fig. 2 illustrates the system architecture designed to 
develop a monitoring system. This system is realized as a 
prototype set-box that combines an array of sensors with 
a microcontroller to control actuators effectively. The 
architecture's foundation is structured around three 
principal segments: the IoT module (comprising Arduino 
UNO and ESP8266), an array of sensors (LM35 for 
temperature, DHT11 for humidity, TGS2601 and MQ2 
for air quality monitoring), and actuators (including a 
FAN and an AC unit). At the heart of the operation, the 
Arduino functions as the main control unit, interfacing 
with the ESP8266 for seamless wireless communication, 
thereby facilitating the relay of sensor data to the 
Thingspeak database [22]. The data collated in the 
Thingspeak database is then formatted into a CSV file, 
prepped for preprocessing and data labeling, which will 
delineate the datasets for training and testing [23]. 
Utilizing RapidMiner, the datasets are then subjected to 

training and testing phases employing machine learning 
algorithms such as Decision Trees (DT), Support Vector 
Machines (SVM), and K-Nearest Neighbors (KNN). 
Following the evaluation phase, the algorithm that 
exhibits the highest accuracy will be integrated into the 
microcontroller programming, laying the groundwork for 
a sophisticated smart kitchen monitoring system. The 
classification model's performance metrics, namely 
accuracy, precision, and recall, are determined using a 
confusion matrix..  The calculation formula is shown in 
the following (1)(2)(3) [24]. 

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%               (7) 

Precision =
TP

TP + FP
× 100%                         (8) 

Recall =
TP

FN + TP
× 100%                           (9) 

B. Hardware Design 

The kitchen's infrastructure incorporates a 
meticulously designed ventilation and air conditioning 
system, specifically implemented to monitor various 
environmental parameters. In this study, the human health 
index is quantified based on three critical parameters: 
temperature, humidity, and air quality. The quantification 
of these parameters in relation to health values is 
systematically tabulated in Table II, providing a 
comprehensive overview of their impact on the overall 
health index in kitchen environments. 

 

Fig. 2. Pin of Microcontroller i/o Connector 

 Fig. 3 illustrates the Microcontroller I/O Connector 
circuit deployed within a smart kitchen monitoring 
system. The sensor module encompasses an ESP8266 
module, which is supplied with a +5V DC input voltage. 
Concurrently, the LM35, DHT11, MQ2, and TGS2601 
sensors are provisioned with a +3V input voltage. The 
output from the LM35 is directed to the analog pin A1, 
the DHT11 to A0, the MQ2 to A2, and the TGS2601 to 
A3. Subsequently, the analog signals are interfaced with 
the microcontroller's ADC (Analog-to-Digital 
Converter), facilitating the transformation of analog 
inputs into digital data. This digital data is then presented 
on a Liquid Crystal Display (LCD) for visualization and 
monitoring purposes. 

C. Testing 

The computational apparatus employed for the 
development of the smart kitchen monitoring system in 



 

MATICS Volume. 16, No. 1, March 2024 

40 

this study is specified as follows: the processor is an Intel 
Core i5 with a clock speed of 1GHz; the system's memory 
is comprised of 4 GB of RAM, storage capabilities are 
provided by a 500 GB hard drive, and the operating 
system utilized is Windows 7 with a 64-bit architecture. 

The stages starting from the prototype design process 
to the evaluation of the classification model carried out 
these steps: 

1) Step 1: The prototype has been constructed in 

adherence to the schematic depicted in Fig. 2. 

2) Step 2: Sensor data values are read and 

subsequently archived in the Thingspeak database in 

CSV format. 

3) Step 3: A classification table delineating three 

categorical states—low, normal, and high—has been 

established. Labeling of data is conducted with 

reference to values from three sensors: LM35, 

DHT11, and MQ2. The standard values for the 

parameters are derived from prior research [21]. The 

parameters of humidity and air quality are each 

classified into three probabilistic states: normal, 

high, and low. Temperature measurements, however, 

are categorized into two probabilistic states: normal 

and high. A 'normal' state is designated when sensor 

readings fall within the specified parameter range. 

Readings below the range are labeled as 'low,' and 

those exceeding the range are classified as 'high,' 

according to their probability. This study has 

identified 14 probabilistic conditions based on the 

data from the three sensors, leading to the creation of 

14 corresponding labels. The details of this 

classification are encapsulated in Table I. 

 
4) Step 4: The dataset was acquired over a duration 

of one hour, from 10:00 to 11:00 WIB. Subsequent 

testing of the sensor array involved exposure to 

varied environmental conditions to evaluate its 

responsiveness to changes in temperature, humidity, 

and gas concentrations. These conditions included 

heating, placement within a humid environment, and 

exposure to smoke. Data were recorded at 15-second 

intervals and stored in the cloud-based Thingspeak 

database. Following data acquisition, preprocessing 

and labeling were conducted in accordance with the 

predefined condition classification. Illustrative 

examples of data corresponding to specific 

conditions are provided in Figs. 4, 5, and 6. 

 

 

Fig. 3. Sample Data of Temperature Condition 

 

 

 

 

 

 

 

 

Fig. 4. Sample Data of Humidity Condition 

 

Fig. 5. Sample Data of Gas Condition 

Fig. 4 delineates the temperature profile under normal 
and heated conditions, indicating that the baseline 
temperature in a normal state is 27°C, which escalates to 
above 29°C when subjected to heat variations. Fig. 5 
illustrates the variations in humidity levels, highlighting 
the correlation between temperature and humidity; a 
normal temperature results in 55% relative humidity (Rh), 
which decreases to below 50% Rh upon increasing the 
temperature. Fig. 6 presents the air quality metrics within 
the room, where a normal condition is quantified as 1, 
while the presence of smoke is denoted by a value of 0, as 
detected by the sensor. 

5) Step 5: The dataset was subjected to evaluation 

utilizing machine learning algorithms including 

Decision Trees (DT), Support Vector Machines 

(SVM), and K-Nearest Neighbors (KNN). The 

TABLE I.  CONDITION CLASSIFICATION DATASET 

Label Condition Solution 

1 Temp: Normal, Rh: Normal, ppm: Normal FAN: OFF 

AC: OFF 

2 Temp: High, Rh: Normal, ppm: Normal FAN: OFF 

AC: ON 

3 Temp: Normal, Rh: High, ppm: Normal FAN: ON 

AC: OFF 

4 Temp: Normal, Rh: Normal, ppm: High FAN: ON 

AC: OFF 

5 Temp: High, Rh: High, ppm: Normal FAN: ON 

AC: ON 

6 Temp: Normal, Rh: High, ppm: High FAN: ON 

AC: OFF 

7 Temp: High, Rh: Normal, ppm: High FAN: ON 

AC: ON 

8 Temp: High, Rh: High, ppm: High FAN: ON 

AC: ON 

9 Temp: Normal, Rh: Low, ppm: Normal FAN: ON 

AC: OFF 

10 Temp: High, Rh: Low, ppm: Normal FAN: ON 

AC: ON 

11 Temp: Normal, Rh: Low, ppm: High FAN: ON 

AC: OFF 

12 Temp: High, Rh: Low, ppm: High FAN: ON 

AC: ON 

13 Temp: Normal, Rh: Normal, ppm: Low FAN: ON 

AC: OFF 

14 Temp: High, Rh: High, ppm: Low FAN: OFF 

AC: ON 
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assessment of these models was conducted using 

RapidMiner, with an emphasis on calculating critical 

metrics like accuracy, precision, and recall. 

 

6) Step 6: The rule sets derived from the decision 

tree algorithm will be integrated into the system. The 

model demonstrating the highest performance will be 

selected for implementation into the microcontroller 

program of the smart kitchen monitoring system. 

IV. RESULTS AND DISCUSSION 

A. Result 

An evaluation of various machine learning models, 
namely Decision Trees (DT), Support Vector Machines 
(SVM), and K-Nearest Neighbors (KNN), was conducted 
using real-time datasets collected at 15-second intervals 
and stored in the Thingspeak database. The dataset for this 
study included 309 preprocessed and labeled instances. It 
was subsequently divided into 80% for training purposes 
and 20% for testing. The evaluation focused on 
calculating the metrics of accuracy, precision, and recall. 
The results of these performance metrics, derived using 
the 10-fold cross-validation method on the DT, SVM, and 
KNN algorithms, are detailed in Table III. 

TABLE III.  ALGORITHM PERFORMANCE 

Algorithm Accuracy Precision Recall 

DT 97.41% 95.35% 88.57% 

SVM 89.35% 86.55% 86.55% 

KNN 75.12% 77.08% 72.33% 

B. Analysis 

 

Fig. 6. Graph of Test Result 

 Based on Fig. 7, the Decision Tree (DT) algorithm 
exhibits the highest prediction accuracy among the 
evaluated algorithms, with performance metrics derived 
from Confusion Matrix test parameters showing an 
accuracy of 97.41%, precision of 95.35%, and recall of 
88.57%. The chart reveals that the DT algorithm 
outperforms the others in terms of accuracy. This superior 
performance could be attributed to the characteristics of 
the dataset and the algorithm's efficacy in handling 
continuous data, which aligns well with the Decision 
Tree's capabilities in managing various data splits 
effectively. 

 

Fig. 7. Result of Decision Tree Algorithm Rule DT 

Fig. 8 depicts the processed data results within a 
Classification Tree, which generated a structure with 5 
nodes and 6 leaves, extending over 5 levels in depth. The 
root node diverges into two internal nodes based on 
humidity: one with humidity > 58 and another with 
humidity ≤ 58. The derived conditions are enumerated 
henceforth: Condition 1 dictates that if humidity > 58 and 
temperature > 35, then both FAN and AC should be 
turned OFF. Condition 2 states that if humidity > 58 and 
temperature ≤ 35, then FAN should be ON and AC OFF. 
Proceeding from the node with humidity ≤ 58, it further 
divides into two nodes distinguished by temperature: one 
with temperature > 30 and another with temperature ≤ 30. 
Condition 3: if temperature > 30 and humidity is within > 
39 and ≤ 58, then FAN should be OFF and AC ON. 
Condition 4: if temperature > 30 and humidity ≤ 39, then 
both FAN and AC should be ON. Condition 5: if 
temperature ≤ 30, gas > 0.5, and humidity ≤ 58, then both 
FAN and AC should be OFF. Condition 6: if temperature 
≤ 30, gas ≤ 0.5, and humidity ≤ 58, then FAN should be 
ON and AC OFF. 

V. CONCLUSION 

Based on research on smart kitchen monitoring 
systems using the internet of things and decision tree 
algorithms on human health index based on Confusion 
Matrix, the following conclusions can be drawn: 

• The algorithmic comparison within machine learning 
frameworks, encompassing Decision Trees (DT), 
Support Vector Machines (SVM), and K-Nearest 
Neighbors (KNN), indicates a pronounced predictive 
efficacy in DT, evidenced by accuracy, precision, and 
recall metrics of 97.41%, 95.35%, and 88.57%, 
respectively. 

• For smart kitchen monitoring systems, the DT 
algorithm is deduced to proficiently classify data 
related to human health index parameters, thereby 
facilitating the real-time monitoring of relative 
humidity (RH), temperature (°C), and gas 
concentration (ppm) via IoT integration. 

• The Classification Tree method has successfully 
pinpointed the most influential parameters for the 
monitoring system, notably temperature, humidity, 
and gas levels. As a result, the decision rules 
extrapolated from the DT algorithm are slated for 
integration into the microcontroller's programming for 
enhanced smart kitchen surveillance. 
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• Accruing comprehensive training data is paramount to 
engender a precise real-time adaptation to kitchen 
environmental conditions. The magnitude of training 
data directly informs the solution's accuracy. 
Prospective studies might incorporate fuzzy logic 
techniques to modulate FAN speed, aiming to 
augment the system's monitoring efficiency and 
efficacy. 
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