Analysis of The Rosenzweig-MacArthur Predator-Prey Model with Anti-Predator Behavior

Ismail Djakaria, Muhammad Bachtiar Gaib, Resmawan Resmawan

Abstract


This paper discusses the analysis of the Rosenzweig-MacArthur predator-prey model with anti-predator behavior. The analysis is started by determining the equilibrium points, existence, and conditions of the stability. Identifying the type of Hopf bifurcation by using the divergence criterion. It has shown that the model has three equilibrium points, i.e., the extinction of population equilibrium point (E0), the non-predatory equilibrium point (E1), and the co-existence equilibrium point (E2). The existence and stability of each equilibrium point can be shown by satisfying several conditions of parameters. The divergence criterion indicates the existence of the supercritical Hopf-bifurcation around the equilibrium point E2. Finally, our model's dynamics population is confirmed by our numerical simulations by using the 4th-order Runge-Kutta methods.

Keywords


Rosenzweig-MacArthur; Predator-Prey Model; Anti-Predator Behaviour; Hopf Bifurcation; Divergence Criterion; Equilibrium Point.

Full Text:

PDF

References


P. B. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis, Priceton University Press, 2003.

J. D. Murray, Mathematical Biology: An Introduction, 3rd Edition, Springer-Verlag, 2002.

C. S. Holling, "Some Characteristic of Simple Types of Predation and Parasitism", The Canadian Entomologist, vol. 91, no. 7, pp. 385-398, 1959.

M. L. Rosenzweig and R. H. MacArthur, "Graphical Representation and Stability Conditions of Predator-Prey Interactions", The American Naturalist, vol. 895, pp. 209-223, 1963.

N. Hasan, R. Resmawan, and E. Rahmi, “Analisis Kestabilan Model Eko-Epidemiologi dengan Pemanenan Konstan pada Predator,” J. Mat. Stat. dan Komputasi, vol. 16, no. 2, pp. 121–142, Dec. 2020.

S. H. Arsyad, R. Resmawan, and N. Achmad, “Analisis Model Predator-Prey Leslie-Gower dengan Pemberian Racun pada Predator,” J. Ris. dan Apl. Mat., vol. 4, no. 1, pp. 1–16, 2020.

S. Maisaroh, R. Resmawan, and E. Rahmi, “Analisis Kestabilan Model Predator-Prey dengan Infeksi Penyakit pada Prey dan Pemanenan Proporsional pada Predator,” Jambura J. Biomath, vol. 1, no. 1, pp. 8–15, 2020.

L. Berec, "Impacts of Foraging Facilitation Among Predators on Predator-Prey Dynamics", Bulletin of Mathematical Biology, vol. 72, pp. 94-121, 2010.

L. Pribylova and A. Peniaskova, "Foraging Facilitation Among Predators and Its Impact on The Stability of Predator-Prey Dynamics", Ecological Complexity, vol. 29, pp. 30-39, 2017.

M. Moustafa, M. H. Mohd, A. I. Ismail, and F. A. Abdullah, "Stage Structure and Refuge Effects in The Dynamical Analysis of a Fractional-Order Rosenzweig-MacArthur Prey-Predator Model", Progress in Fractional Differentiation and Application, vol. 5, no. 1, pp. 49-64, 2019.

L. K. Beay and M. Saija, "A Stage-Structure Rosenzweig-MacArthur Model with Effect of Prey Refuge", Jambura Journal of Biomathematics, vol. 1, no. 1, pp. 1-7, 2020.

E. Alamanza-Vasquez, R. D. Ortiz-Ortiz, and A. M. Marin-Ramirez, "Bifurcations in The Dynamics of Rosenzweig-MacArthur Predator-Prey Model Considering Saturated Refuge for The Preys", Applied Mathematical Sciences, vol. 9, pp. 7475-7482, 2015.

M. Moustafa, M. H. Mohd, A. I. Ismail, and F. A. Abdullah, "Dynamical Analysis of a Fractional-Order Rosenzweig-MacArthur Model Incorporating a Prey Refuge", Chaos, Solitons and Fractals, vol. 109, pp. 1-13, 2018.

A. Suryanto, I. Darti, H. S. Panigoro, and A. Kilicman, "A Fractional-Order Predator-Prey Model with Ratio-Dependent Functional Response and Linear Harvesting", Mathematics, vol. 7, no. 11, pp. 1-13, 2019.

H. S. Panigoro, A. Suryanto, W. M. Kusumawinahyu, and I. Darti, "A Rosenzweig-MacArthur Model with Continuous Threshold Harvesting in Predator Involving Fractional Derivatives with Power Law and Mittag-Leffler Kernel", Axioms, vol. 9, no. 122 pp. 1-23, 2020.

S. G. Mortoja, P. Panja, and S. K. Mondal, "Dynamics of a Predator-Prey Model with Stage-Structure on Both Species and Anti-Predator Behavior", Informatics in Medicine Unlocked, vol. 10, pp. 50-57, 2018.

S. H. Strogatz, Nonlinear Dynamics and Chaos with Application to Physics, Biology Chemistry and Engineering, West-View Press, 2015.

L. Perko, Differential Equations and Dynamical Systems, 3rd Edition, Springer-Verlag, 2001.

J. K. Hale and H. Kocak, Dynamic and Bifurcation, Springer-Verlaag, 1991.

R. Sundari and E. Apriliani, "Konstruksi Fungsi Lyapunov untuk Menentukan Kestabilan", Jurnal Sains dan Seni ITS, vol. 6, no. 1, pp. 28-32, 2017.

S. S. Pilyugin and P. Waltman, "Divergence Criterion for Generic Planar System", SIAM J Appl. Math., vol. 64, pp. 81-93, 2003.

A. Suryanto, Metode Numerik untuk Persamaan Diferensial Biasa dan Aplikasinya dengan Matlab, Universitas Negeri Malang, 2017.




DOI: https://doi.org/10.18860/ca.v6i4.11472

Refbacks



Copyright (c) 2021 Ismail Djakaria, Muhammad Bachtiar Gaib, Resmawan Resmawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.