Estimasi Nonlinear Least Trimmed Squares (NLTS) pada Model Regresi Nonlinier yang Dikenai Outlier

Nur Laili Arofah, Sri Harini

Abstract

Constant Elasticity of Substitution (CES) production function is the intrinsic nonlinear regression models that are often used to estimate the data in an industry. Intrinsic nonlinear regression model is a kind
of nonlinear regression that can not be linearized, so as to estimate the beta parameters nonlinear statistical model used was Nonlinear Least Squares (NLS) using a first order taylor series approach used in the Gauss
Newton iteration. One of the problems often encountered in the analysis of data is an outlier, the presence of outliers in the data analysis greatly influence the results of the analysis so it becomes less valid and the estimation
become biased. One method that is resistant to outliers regression is a method of Nonlinear Least Trimmed Squares. This research aims to determine the characteristics of parameter CES production function which
contains outlier. The result shows that parameter of the production function CES which contains outliers are bias, inconsistent. So the CES production function which does not contain outliers better than the are contains
outliers.

Keywords

Nonlinear Statistical Model; Parameter Estimation; Constant Elasticity of Substitution (CES) production function; Outliers; Nonlinear Least Trimmed Square (NLTS) Method, Gauss Newton Iteration

PDF

References

N. Draper dan H. Smith, analsis regresi terapan, jakarta: PT Gramedia Pustaka Utama, 1992.

F. Purniawati, Aplikasi Fungsi Produksi Cobb-Douglas dalam Menestimasi Pendapatan Pajak Hotel Kota Surakarta Berdasarkan Jumlah Tenaga Kerja dan Pengunjung Hotel, Surakarta: Skripsi tidak dipublikasi, 2009.

H. Wibisono, Analisis Efisiensi Usaha Tani Kubis, Diponegoro: Skripsi tidak dipublikasi, 2011.

A. Aziz, Ekonometrika Teori & Praktik Eksperimen dengan MATLAB, Malang: UIN Maliki Press, 2010.

S. Adiningsih, Statistik Edisi Pertama Yogyakarta: BPFE-Yogyakarta, 2009.

J. N. N. Kutner C.H, Applier Linier Regression Models, New York: Mc Graw Hill, 2004.

D. Permatasari, Pemodelan Kurva Imbal Hasil Obligasi Korporasi Rating AA dan A dengan Nelson Siegel Svensson dan Cubic Spline Smoothing, surakarta: Skripsi tidak dipublikasikan, 2009.

R. Sembiring, Analisis Regresi, Bandung: ITB, 1995.

Soemartini, Pencilan (Outlier), Bandung: Universitas Padjajaran, 2007.

A. Azizah, Analisis Sifat Penduga Least Trimmed Squares (LTS) pada Regresi Linier Berganda yang Mengandung Pencilan dengan Berbagai Ukuran Contoh, Malang: Skripsi tidak dipublikasikan, 2013.

P. Cizek, “Nonlinear Least Trimmed,” JCMF 2002, pp. 78-86, 2002.

R. Sundyni, Sifat Penduga Nonlinear Least Square (NLS) dan Nonlinear Least Trimmed Square (NLTS) Akibat Pertambahan Banyaknya Pencilan dan Ukuran Contoh, Malang: Skripsi tidak dipublikasi, 2014.

C. Chen, “Robust Regression and Outlier Detection with Robustreg Procedur,” Proceedings, pp. 27-65, 2002.

DOI: https://doi.org/10.18860/ca.v4i1.3170

Refbacks

• There are currently no refbacks.