A SIMPLE SYNTHESIS OF NICKEL OXIDE NANOTUBE USING HIGH VOLTAGE ELECTROLYSIS
Abstract
Recently, the development of nanoparticle nickel oxide has increased due to their potential application such as biosensors, catalysts, solar cells, supercapacitors, and batteries. In this work, the addition of CTAB for nickel oxide nanoparticle synthesis using electrolysis was investigated. The nickel plates were used as anode and cathode in the electrolysis process. The process was operated at a constant voltage of 60 V for 30 minutes. The XRD result showed conformity with the Nickel oxide diffraction pattern. Meanwhile, the impurity from nickel hydroxide peaks still appeared. From FTIR characterization also indicates the band of Ni-O stretching vibration. The morphology characterization of nickel oxide using Scanning Electron Microscopy (SEM) showed the nanotube structure, while Transmission Electron Microscopy showed the nanoparticle size from 250.44 to 325.60 nm in length. On the other hand, the transformation of Ni(OH)2 to NiO has been shown using TGA characterization.
Keywords
Full Text:
PDFReferences
Iskandar F, Setiawan B, Mayangsari TR, Maharsi R, Purwanto A, Aimon AH. Electrochemical impedance analysis of polyvinylpyrrolidone-coated sulfur/reduced graphene oxide (S/rGO) electrode. Mater Res Express [Internet]. 2018;6(2):25514. Available from: http://dx.doi.org/10.1088/2053-1591/aaee41
Wang R, Han Y, Wang Z, Jiang J, Tong Y, Lu X. Nickel@ Nickel Oxide Core–Shell Electrode with Significantly Boosted Reactivity for Ultrahigh‐Energy and Stable Aqueous Ni–Zn Battery. Adv Funct Mater. 2018;28(29):1802157.
Huang Y, Yang H, Xiong T, Adekoya D, Qiu W, Wang Z, et al. Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Storage Mater. 2020;25:41–51.
Lee W, Kim I, Choi H, Kim K. Synthesis of Ni/NiO core-shell nanoparticles for wet-coated hole transport layer of the organic solar cell. Surf Coatings Technol. 2013;231:93–7.
Nie W, Tsai H, Blancon J, Liu F, Stoumpos CC, Traore B, et al. Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide. Adv Mater. 2018;30(5):1703879.
Wang H, Guo W, Jiang Z, Yang R, Jiang Z, Pan Y, et al. New insight into the enhanced activity of ordered mesoporous nickel oxide in formaldehyde catalytic oxidation reactions. J Catal. 2018;361:370–83.
Kang Y, Wang W, Pu Y, Li J, Chai D, Lei Z. An effective Pd-NiOx-P composite catalyst for glycerol electrooxidation: Co-existed phosphorus and nickel oxide to enhance performance of Pd. Chem Eng J. 2017;308:419–27.
Tonezzer M, Le DTT, Iannotta S, Van Hieu N. Selective discrimination of hazardous gases using one single metal oxide resistive sensor. Sensors Actuators B Chem. 2018;277:121–8.
Hoa ND, Hung CM, Van Duy N, Van Hieu N. Nanoporous and crystal evolution in nickel oxide nanosheets for enhanced gas-sensing performance. Sensors Actuators B Chem. 2018;273:784–93.
Gamarnik MY. 25.P.31 Size-related change of lattice parameters in Nio nanoparticles. J Aerosol Sci [Internet]. 1994;25(SUPPL. 1):411–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028424196&doi=10.1016%2F0021-8502%2894%2990435-9&partnerID=40&md5=4dab8473625721d99c0197b7cce95a93
El-Kemary M, Nagy N, El-Mehasseb I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process [Internet]. 2013;16(6):1747–52. Available from: http://www.sciencedirect.com/science/article/pii/S136980011300156X
Xu C, Hong K, Liu S, Wang G, Zhao X. A Novel Wet Chemical Route to NiO Nanowires. J Cryst Growth. 2003;255:308–12.
Li C, Liu S. Preparation and Characterization of Ni(OH)2 and NiO Mesoporous Nanosheets. J Nanomater. 2012;2012.
Shajudheen VM, Sivakumar M, Kumar S. Synthesis and Characterization of NiO Nanoparticles by Thermal Oxidation of Nickel Sulfide Nanoparticles. Mater Today Proc. 2016;3(2450–2456).
Barakat A, Al-Noaimi M, Suleiman M, Aldwayyan AS, Hammouti B, Hadda TB, et al. One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua (2,9-dimethyl-1,10-phenanthroline) NiCl2 Complex. Int J Mol Sci. 2013;14:23941–54.
Kiani M, Tehrani MA, Sayahi H. Reusable and robust high sensitive non-enzymatic glucose sensorbased on Ni(OH)2 nanoparticles. Anal Chim Acta. 2014;839:26–33.
Budipramana Y, Nurcahyanie YD, Jumali MA, Ratnawati R, Sugito S. Electrolysis Synthesis and Characterization Properties of Nickel Oxide Nanoparticle. J Telecommun Electron Comput Eng. 2018;10(2–3):113–6.
Pramana YB, Ersam T, Kurniawan F. Synthesis nickel hydroxide by electrolysis at high voltage. J Eng Appl Sci. 2014;
Mondal AK, Su D, Chen S, Zhang J, Ung A, Wang G. Microwave-assisted synthesis of spherical β-Ni(OH)2 superstructures for electrochemical capacitors with excellent cycling stability. Chem Phys Lett [Internet]. 2014;610–611:115–20. Available from: http://www.sciencedirect.com/science/article/pii/S0009261414006034
Abd A, Ali R, Hussein A. Fabrication And Characterization Of Nickel Oxide Nanoparticles/Silicon Heterojunction. J Multidiscip Eng Sci Stud. 2016 Apr 30;2:434–40.
López-Ortiz A, Collins-Martínez VH, Hernández-Escobar CA, Flores-Gallardo SG, Zaragoza-Contreras EA. Protection of NiO nanoparticles against leaching in acid medium by grafting of polyacrylic acid. Mater Chem Phys [Internet]. 2008;109(2):306–10. Available from: http://www.sciencedirect.com/science/article/pii/S0254058407007055
Qiao H, Wei Z, Yang H, Zhu L, Yan X. Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J Nanomater. 2009;2009.
Rahdar A, Aliahmad M, Azizi Y. NiO nanoparticles: synthesis and characterization. 2015;
Ji R-Y, Chan D-S, Jow J-J, Wu M-S. Formation of open-ended nickel hydroxide nanotubes on three-dimensional nickel framework for enhanced urea electrolysis. Electrochem commun [Internet]. 2013;29:21–4. Available from: http://www.sciencedirect.com/science/article/pii/S1388248113000209
Wu M-S, Huang K-C. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors. Chem Commun. 2011;47(44):12122–4.
Pang H, Lu Q, Li Y, Gao F. Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chem Commun [Internet]. 2009;(48):7542–4. Available from: http://dx.doi.org/10.1039/B914898A
Patel KN, Deshpande MP, Gujarati VP, Pandya S, Sathe V, Chaki SH. Structural and optical analysis of Fe doped NiO nanoparticles synthesized by chemical precipitation route. Mater Res Bull [Internet]. 2018;106:187–96. Available from: http://www.sciencedirect.com/science/article/pii/S0025540817328295
Farooq O, Anis-ur-Rehman M, ul Haq A. Temperature dependent thermal and impedance response of NiO/Fe2O3 composite and compound nanoparticles. J Alloys Compd [Internet]. 2019;786:314–20. Available from: http://www.sciencedirect.com/science/article/pii/S0925838819303731
Lin C, Al-Muhtaseb S, Ritter J. Thermal Treatment of Sol-Gel Derived Nickel Oxide Xerogels. J Sol-gel Sci Technol - J SOL-GEL SCI TECHNOL. 2003 Aug 1;28:133–41.
DOI: https://doi.org/10.18860/neu.v13i1.10224
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Yanatra Budi Pramana, Bramianto Setiawan, Prihono Prihono, Yitno Utomo, Marianus Subandowo, Krisyanti Budipramana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published By:
Program Studi Fisika Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang, Indonesia
B.J. Habibie 2nd Floor
Jl. Gajayana No.50 Malang 65144
Telp./Fax.: (0341) 558933
Email: neutrino@uin-malang.ac.id
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
View My Stats