THE EFFECT OF SPUTTERING TEMPERATURE OF TiO2/ITO-PEN PHOTOANODES IN DYE SENSITIZED SOLAR CELL
Abstract
Currently, the world is facing a major crisis related to the lack of sustainable, safe, and environmentally friendly energy resources. Dye sensitized solar cells (DSSC), another name for third-generation solar cells, have gained a lot of interest due to ease of production, cheapness, and environmental friendliness. The photoanode is among DSSC's most crucial components. In this research, the active layer on the TiO2 photoanode was optimized to improve the efficiency of the DSSC. The active layer was deposited using Radio Frequency (RF) magnetron sputtering on an Indium tin oxide-polyethylene naphthalate (ITO-PEN) substrate. The sputtering temperature was varied to 25, 80, 120, and 160℃ for one hour. The thin film TiO2/ITO-PEN photoanode will be characterized by means of X-ray Diffraction (XRD), Ultraviolet-Visible (UV-Vis) spectroscopy, and solar simulator. The XRD analysis shows that the best crystal size is 14.55 nm for a sputtering temperature of 80℃. According to the UV-Vis data, optical absorption increases with increasing sputtering temperature. The wavelength range where the absorption peak occurs is 252–465 nm, and the smallest value of the energy gap is found at a sputtering temperature of 25℃ with a value of 3.02 eV. For the TiO2/ITO-PEN thin layer, the maximum efficiency was achieved at 0.12% at a sputtering temperature of 25°C.
Keywords
Full Text:
PDFReferences
Krawczak E. Dye Photosensitizers and Their Influence on DSSC Efficiency: A Review. IAPGOS [Internet]. 2019 Sep 26 [cited 2023 Sep 27];9(3):86–90. Available from: https://ph.pollub.pl/index.php/iapgos/article/view/34
Choudhury BD, Lin C, Shawon SMAZ, Soliz-Martinez J, Huq H, Uddin MJ. A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanoparticles for flexible dye sensitized solar cell. Sci Rep [Internet]. 2021 Apr 6 [cited 2023 Feb 10];11(1):7552. Available from: https://www.nature.com/articles/s41598-021-87123-z
Wante HP, Yap SL, Aidan J, Alkasim A. Fabrication and Characterization of Dye-Sensitized Solar Cells (DSSCs) using Flexible Non-conductive Polyetherimide (PEI) Polymer Substrate. 2020;
Areerob Y, Hamontree C, Sricharoen P, Limchoowong N, Nijpanich S, Nachaithong T, et al. Synthesis of novel MoWO4 with ZnO nanoflowers on multi-walled carbon nanotubes for counter electrode application in dye-sensitized solar cells. Sci Rep [Internet]. 2022 Jul 21 [cited 2023 Feb 10];12(1):12490. Available from: https://www.nature.com/articles/s41598-022-16791-2
Magiswaran K, Norizan MN, Mahmed N, Mohamad IS, Idris SN, Sabri MFM, et al. Controlling the Layer Thickness of Zinc Oxide Photoanode and the Dye-Soaking Time for an Optimal-Efficiency Dye-Sensitized Solar Cell. Coatings [Internet]. 2022 Dec 22 [cited 2023 Feb 10];13(1):20. Available from: https://www.mdpi.com/2079-6412/13/1/20
Hou X, Aitola K, Lund PD. TiO 2 nanotubes for dye‐sensitized solar cells—A review. Energy Sci Eng [Internet]. 2021 Jul [cited 2023 Feb 10];9(7):921–37. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ese3.831
Hu JE, Shih PH, Yang SY, Chou JC. Fabrication of flexible dye-sensitised solar cells with titanium dioxide thin films based on screen-printing technique. Micro & Nano Letters [Internet]. 2012 Dec 1 [cited 2023 Feb 10];7(12):1162–5. Available from: https://digital-library.theiet.org/content/journals/10.1049/mnl.2012.0529
Nandan Arka G, Bhushan Prasad S, Singh S. Comprehensive study on dye sensitized solar cell in subsystem level to excel performance potential: A review. Solar Energy [Internet]. 2021 Sep [cited 2023 Feb 10];226:192–213. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0038092X21006927
Rahman MdM, Kang HC, Yoo K, Lee JJ. Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells. J Electrochem Sci Technol [Internet]. 2022 Nov 30 [cited 2023 Feb 10];13(4):453–61. Available from: http://jecst.org/journal/view.php?doi=10.33961/jecst.2022.00262
Chang CH, Chuang CH, Zhong DY, Lin JC, Sung CC, Hsu CY. Synthesized TiO2 Mesoporous by Addition of Acetylacetone and Graphene for Dye Sensitized Solar Cells. Coatings [Internet]. 2021 Jul 1 [cited 2023 Feb 9];11(7):796. Available from: https://www.mdpi.com/2079-6412/11/7/796
Luo D, Liu B, Fujishima A, Nakata K. TiO 2 Nanotube Arrays Formed on Ti Meshes with Periodically Arranged Holes for Flexible Dye-Sensitized Solar Cells. ACS Appl Nano Mater [Internet]. 2019 Jun 28 [cited 2023 Feb 9];2(6):3943–50. Available from: https://pubs.acs.org/doi/10.1021/acsanm.9b00849
Kim H, Wang Y, Denisov N, Wu Z, Kment Š, Schmuki P. DC sputter deposited TiO2 layers on FTO: towards a maximum photoelectrochemical response of photoanodes. J Mater Sci [Internet]. 2022 Jul [cited 2023 Feb 10];57(27):12960–70. Available from: https://link.springer.com/10.1007/s10853-022-07420-4
Magiswaran K, Norizan MN, Mohamad IS, Mahmed N, Idris SN, Sobri SA. Charge Recombination in Zinc Oxide-Based Dye-Sensitized Solar Cell: A Mini Review. 2021;14.
Ruba N, Prakash P, Sowmya S, Janarthana B, Prabu AN, Chandrasekaran J, et al. Recent Advancement in Photo-Anode, Dye and Counter Cathode in Dye-Sensitized Solar Cell: A Review. J Inorg Organomet Polym [Internet]. 2021 May [cited 2023 Feb 10];31(5):1894–901. Available from: https://link.springer.com/10.1007/s10904-020-01854-6
Solaiyammal T, Murugakoothan P. Green synthesis of Au and the impact of Au on the efficiency of TiO2 based dye sensitized solar cell. Materials Science for Energy Technologies [Internet]. 2019 Aug [cited 2023 Sep 27];2(2):171–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589299118301319
Awsha AA, Alazoumi SH, Elhub B. A Review on the development of TiO2 photoanode for Solar Applications. 2021;2(2).
K. N, Rout CS. Photo-powered integrated supercapacitors: a review on recent developments, challenges and future perspectives. J Mater Chem A [Internet]. 2021 [cited 2023 Feb 13];9(13):8248–78. Available from: http://xlink.rsc.org/?DOI=D1TA00444A
Hou W, Xiao Y, Han G, Lin JY. The Applications of Polymers in Solar Cells: A Review. Polymers [Internet]. 2019 Jan 15 [cited 2023 Feb 14];11(1):143. Available from: https://www.mdpi.com/2073-4360/11/1/143
Kishore Kumar D, Kříž J, Bennett N, Chen B, Upadhayaya H, Reddy KR, et al. Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Materials Science for Energy Technologies [Internet]. 2020 [cited 2023 Feb 13];3:472–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589299120300185
Zhu R, Zhang Z, Li Y. Advanced materials for flexible solar cell applications. Nanotechnology Reviews [Internet]. 2019 Dec 18 [cited 2023 Feb 9];8(1):452–8. Available from: https://www.degruyter.com/document/doi/10.1515/ntrev-2019-0040/html
Lee H, Hwang D, Jo SM, Kim D, Seo Y, Kim DY. Low-Temperature Fabrication of TiO 2 Electrodes for Flexible Dye-Sensitized Solar Cells Using an Electrospray Process. ACS Appl Mater Interfaces [Internet]. 2012 Jun 27 [cited 2024 Oct 30];4(6):3308–15. Available from: https://pubs.acs.org/doi/10.1021/am3007164
AL-Baradi AM. Sputtered and heat-treated TiO2 electrodes for dye-sensitized solar cells applications. Results in Physics [Internet]. 2020 Jun [cited 2023 Feb 9];17:103109. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211379720308251
Meng L, Yang T. Inclined Substrate Deposition of Nanostructured TiO2 Thin Films for DSSC Application. Molecules [Internet]. 2021 May 24 [cited 2023 Sep 27];26(11):3122. Available from: https://www.mdpi.com/1420-3049/26/11/3122
Augustowski D, Kwaśnicki P, Dziedzic J, Rysz J. Magnetron Sputtered Electron Blocking Layer as an Efficient Method to Improve Dye-Sensitized Solar Cell Performance. Energies [Internet]. 2020 May 27 [cited 2023 Feb 11];13(11):2690. Available from: https://www.mdpi.com/1996-1073/13/11/2690
Fernández S, Torres I, Gandía JJ. Sputtered Ultrathin TiO2 as Electron Transport Layer in Silicon Heterojunction Solar Cell Technology. 2022;
Low FW, Chin Hock G, Kashif M, Samsudin NA, Chau CF, Indah Utami AR, et al. Influence of Sputtering Temperature of TiO2 Deposited onto Reduced Graphene Oxide Nanosheet as Efficient Photoanodes in Dye-Sensitized Solar Cells. Molecules [Internet]. 2020 Oct 21 [cited 2023 Feb 11];25(20):4852. Available from: https://www.mdpi.com/1420-3049/25/20/4852
Pujiarti H, Sholeha N, Diantoro M, Hidayat R. The Effect of Ti-Isopropoxide (TTIP) Treatment on The TiO2 Mesoporous Layer for DSSC Application. 2023;
Tiwari A, Singh S, Srivastava P. Exploring the potential of potato starch-capped TiO2 nanoparticles for DSSC photoanodes. Results in Optics [Internet]. 2024 May [cited 2024 Mar 3];15:100630. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666950124000270
Bakr NA, Ali AK, Jassim SM. Fabrication and Efficiency Enhancement of Z907 Dye Sensitized Solar Cell Using Gold Nanoparticles. j adv phys [Internet]. 2017 Sep 1 [cited 2023 Sep 28];6(3):370–4. Available from: http://www.ingentaconnect.com/content/10.1166/jap.2017.1336
Ramadhani DAK, Sholeha N, Khusna NN, Diantoro M, Afandi AN, Osman Z, et al. Ag-doped TiO2 as photoanode for high performance dye sensitized solar cells. Materials Science for Energy Technologies [Internet]. 2024 [cited 2024 Mar 3];7:274–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589299124000028
Fauzi A, Lalasari LH, Sofyan N, Dhaneswara D, Firdiyono F, Setiawan I, et al. Exploring heterogenous TiO2 nanocrystals from natural ilmenite mineral extraction for energy application. Materials Science for Energy Technologies [Internet]. 2024 [cited 2024 May 12];7:216–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589299123000630
P. K, Vijayanarayanan D, M. S, R.T. AK, C. S, K. J. Optimization of substrate temperature and characterization of tin oxide based transparent conducting thin films for application in dye-sensitized solar cells. Thin Solid Films [Internet]. 2017 Jun [cited 2024 Mar 3];631:1–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040609017302584
Sulaiman AS, Rahman MYA, Umar AA, Salleh MM. Dye-Sensitized Solar Cell Utilizing TiO2 Nanostructure Films: Effect of Synthesis Temperature. Russ J Electrochem [Internet]. 2018 Jan [cited 2024 Mar 3];54(1):56–61. Available from: http://link.springer.com/10.1134/S102319351801007X
Kang SH, Lim JW, Kim HS, Kim JY, Chung YH, Sung YE. Photo and Electrochemical Characteristics Dependent on the Phase Ratio of Nanocolumnar Structured TiO 2 Films by RF Magnetron Sputtering Technique. Chem Mater [Internet]. 2009 Jul 14 [cited 2024 Mar 3];21(13):2777–88. Available from: https://pubs.acs.org/doi/10.1021/cm900378c
Doghmane HE, Touam T, Chelouche A, Challali F, Bordji B. Investigation of the Influences of Post-Thermal Annealing on Physical Properties of TiO2 Thin Films Deposited by RF Sputtering. Semiconductors [Internet]. 2020 Feb [cited 2024 Mar 3];54(2):268–73. Available from: http://link.springer.com/10.1134/S1063782620020086
Pratiwi DD, Nurosyid F, Kusumandari, Supriyanto A, Suryana R. Performance improvement of dye-sensitized solar cells (DSSC) by using dyes mixture from chlorophyll and anthocyanin. J Phys: Conf Ser [Internet]. 2017 Nov [cited 2024 Oct 30];909:012025. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/909/1/012025
Tian H, Zhang J, Yu T, Zou Z. Analysis on dye-sensitized solar cell’s efficiency improvement. J Phys: Conf Ser [Internet]. 2011 Feb 1 [cited 2024 Oct 30];276:012188. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/276/1/012188
Chinnarani M, Prabu KM, Suresh S. Plasmonic silver loaded anatase titanium dioxide nanospheres photoanode for dye-sensitized solar cell. Results in Chemistry [Internet]. 2023 Jan [cited 2023 Oct 21];5:100835. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211715623000747
Jagtap S, Chopade P, Tadepalli S, Bhalerao A, Gosavi S. A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Review [Internet]. 2019 Mar [cited 2023 Nov 24];27(1):90–103. Available from: https://czasopisma.pan.pl/dlibra/publication/131917/edition/115240/content
Toyao T, Minakata M, Iyatani K, Ebrahimi A, Chen PC, Tsai CB, et al. Development of dye-sensitized solar cells based on visible-light-responsive TiO2 thin films with a unique columnar structure. Res Chem Intermed [Internet]. 2013 Jan [cited 2023 Aug 23];39(1):415–24. Available from: http://link.springer.com/10.1007/s11164-012-0659-x
Rajhi AA, Alaziz KMA, Oviedo BSR, Yadav A, Hernández E, Gallegos C, et al. Enhancing the performance of quantum dot solar cells through halogen adatoms on carboxyl edge-functionalized graphene quantum dots. Journal of Photochemistry and Photobiology A: Chemistry [Internet]. 2024 Jan [cited 2023 Oct 26];447:115240. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1010603023007050
Fazli FIM, Ahmad MK, Soon CF, Nafarizal N, Suriani AB, Mohamed A, et al. Dye-sensitized solar Cell using pure anatase TiO2 annealed at different temperatures. Optik [Internet]. 2017 Jul [cited 2024 Mar 3];140:1063–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0030402617304151
Hattori R, Goto H. Carrier leakage blocking effect of high temperature sputtered TiO2 film on dye-sensitized mesoporous photoelectrode. Thin Solid Films [Internet]. 2007 Jul [cited 2024 Mar 3];515(20–21):8045–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040609007003768
DOI: https://doi.org/10.18860/neu.v17i1.29404
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Alfiatul Ma'arifah, Herlin Pujiarti, Millah Nurhamidah, Ridha Diningsih
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published By:
Program Studi Fisika Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang, Indonesia
B.J. Habibie 2nd Floor
Jl. Gajayana No.50 Malang 65144
Telp./Fax.: (0341) 558933
Email: neutrino@uin-malang.ac.id
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
View My Stats