The Potential of Black Cumin (Nigella sativa, L.) Seeds Extract to Prevent Polyphagia and Weight Loss in Rattus Norvegicus of Diabetes Mellitus-Type 2

Retno Susilowati, Ahmad Ghazali, Nabila Qurrota A’yunin

Abstract


Patients of Diabetes Mellitus-type 2 (DM-2) is not only characterized by an increase of blood glucose levels, but also it is characterized by polyphagia and weight loss. This research aimed to discover the potential of 80% ethanol extract of Indonesia Nigella sativa L. (black cumin) seeds to the feed consumption level and changes in body weight of DM-2 rats model due to the administration of High Fat Diet (HFD) followed by the induction of streptozotocin (STZ) in a dose of 30 mg/kg Body Weight (BW). The DM-2 rats as the induction results divided into five groups, it was given a treatment using N. sativa extract with different doses, i.e. 0, 24, 48 and 72 mg/kg BW (DM-0, DM-24, DM-48, DM-72), positive control used metformin 45 mg/kg BW (DM-Metf). Non-DM rats (Normal)  used as reasonable control. HFD induction carried out for 14 weeks, and N. sativa therapy conducted for four weeks after the oral glucose tolerance test. During the treatment, an observation of the feed consumption level and weekly weight gain were carried out. The data obtained were tested using one-way ANOVA, and it continued by Duncan Multiple Rank Test (DMRT), α= 5%. The research results indicated that the administration of 80% ethanol extract Indonesia N. sativa using the doses of 24 mg/kg BW and 48 mg/kg BW can control the feed consumption levels and prevent significant weight loss (p<0.05)

Keywords


Seed Black cumin; Loss weight; Rattus Norvegicus; DM-2

Full Text:

PDF

References


Bramante C. T., C. J. Lee, and K. A. Gudzunel. 2017. Treatment of Obesity in Patients With Diabetes. Spectrum Diabetes Journals 3 (4): 237-243.

Vaag A. and S. S. Lund. 2007. Non obese patients with type 2 diabetes and predabetic subjacts: distinct phenotypes requiring special diabetes treatment and (or) prevention. Appl. Physiol. Nutr. Metab. 32: 912-920.

Kobayashi H., T. Nakamura, K. Miyaoka, M. Nishida, T. Funahashi, S. Yamashita, Y. Matsuzawa. 2001. Visceral Fat Accumulation Contributes to Insulin Resistance, Small-Sized Low-Density Lipoprotein, and Progression of Coronary Artery Disease in Middle-Aged Non-Obese Japanese Men. Jpn Circ J 65: 193 –199.

Al-Goblan A. S., M. A. Al-Alfi, M. Z. Khan. 2014. Mechnism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 7: 587–591.

Hardya O. T., M. P. Czecha and S. Corveraa. 2012. What causes the insulin resistance underlying obesity?, Curr Opin Endocrinol Diabetes Obes 19(2): 81–87.

Gastaldelli A., S. Baldi, M. Pettiti, E. Toschi, S. Camastra, A. Natali, B. R. Landau, and E. Ferrannini. 2000. Influence of Obesity and Type 2 Diabetes on Gluconeogenesis and Glucose Output in Humans: A Quantitative Study. Diabetes 49: 1367-1373 .

Chung S. T., D. S. Hsia, S. K. Chacko, L. M. Rodriguez, and M. W. Haymond. 2015. Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes, Diabetologia 58(3): 596–603.

Dambha-Miller H., A. J. Day, J. Strelitz , G. Irving and S. J. Griffin. 2020. Research: Epidemiology Behaviour change, weight loss and remission of Type 2 diabetes: a community-based prospective cohort study. Diabet. Med. 37: 681–688.

Meneghini, L. F., D. Orozco-Beltran, K. Khunti, S. Caputo, T. Damçi, A. Liebl, and S. A. Ross. 2011. Weight Beneficial Treatments for Type 2 Diabetes. J Clin Endocrinol Metab. 96(11): 3337–3353.

American Diabetes Association. 2019. 8. Obesity management for the treatment of type 2 diabetes: Standards of Medical Care in Diabetesd 2019. Diabetes Care 42(Suppl. 1): S81–S89.

Almatrafi A. 2016. Medicinal uses of Nigella sativa (Black seeds) . International Journal of Alternative Medicine 21 (1): 1129-1131.

Yimer E. M., K. B. Tuem, A. Karim, N. Ur-Rehman, and F. Anwar. 2019. Review Article: Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses, Evidence-Based Complementary and Alternative Medicine 2019: 1-16.

Susilowati R., V. Ainuzzakki, M. R. Nadif, and A. R. Diana, 2019. The efficacy of Nigella Sativa L. extracts to reduce cardiovascular disease risk in diabetic dyslipidemia, International Conference on Biology and Applied Science (ICOBAS). AIP Conference Proceedings 2120: 1-6.

Fararh K. M., Y. Shimizu , T. Shiina, H. Nikami, M. M. Ghanem, T. Takewaki, 2005. Thymoquinone reduces hepatic glucose production in diabetic hamsters, Research in Veterinary Science 79: 219–223.

Zhang, L. V. Ming, Xiao-Yan, Li, Jing, Xu, Zhi-Gang, and Chen, Li, 2008. The Characterization of High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model. Experimental Diabetes Research (2008): 1-9.

Tang L.Q., W. Wei, L. M. Chen, S. Liu, 2006. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats, Journal of Ethnopharmacology 108: 109–111.

Pawar SD, P. Thakur , B. K. Radhe, H. Jadhav, V. Behere , V. Pagar . 2017. The accuracy of polyuria, polydipsia, polyphagia, and Indian Diabetes Risk Score in adults screened for diabetes mellitus type-II. Med J DY Patil Univ 10: 263-267.

Szkudelski, and Skudelska. 2002. Streptozotocin Induces Lipolysys in Rat Adipocytes in Vitro. Department of animal physiology and Biochemistry, University Of Agriculture, Poznan, Poland. Res.5: 255-259.

Alimohammadi S., R. Hobbenaghi, J. Javanbakht, D. Kheradmand, R. Mortezaee, M. Tavakoli, F. Khadivar and H. Akbari. 2013. Protective and antidiabetic effects of extract from Nigella sativa on blood glucose concentrations against streptozotocin (STZ)-induced diabetic in rats: an experimental study with histopathological evaluation, Diagnostic Pathology 8:137.

Heshmati, J., N. Namazi, M. R. Memarzadeh, M. Taghizadeh & F. Kolahdooz, 2015. Nigella sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial, Food Research International (2015): 1-28.

Kim E. S., J. S. Jeong, K. Han, M. K. Kim, S. H. Lee, Y. M. Park, K. H. Baek, S.D. Moon, J. H. Han, K. H. Song & H. S. Kwon. 2018. Impact of weight changes on the incidence of diabetes mellitus: a Korean nationwide cohort study, Scientific Report, 8:3735-3742.

Azrimaidaliza. 2011. Asupan Zat Gizi Dan Penyakit Diabetes Melitus. Jurnal kesehatan masyarakat 6: 1.

Feinman R. D. and E. J. Fine. 2007. Review Open Access Nonequilibrium thermodynamics and energy efficiency in weight loss diets, Theoretical Biology and Medical Modelling 4 (27): 1-13.

Abduallah A. M., A. A. Rashed, A. K. Gamaleldeen, S. R. M. Sayed. 2017. The Effect of Nigella Sativa Extract (Thymoquinone) on Glucose Insulin Levels and Body Weight of Induced Diabetic Female Rats, American Journal of Life Sciences. 5 (2): 52-56.

Burits, M and F. Bucar. 2000. Antioxidant Activity og Nigella sativa Essensial Oil. Journal Phythotherapy Research 14(5): 323-328.

Mathur, L. Murli, J. Gaur, R. Sharma, K. R Haldiya. 2011. Antidiabetic properties of a spice plant Nigella sativa. Journal Endocrinal Metab 1 (1): 1-8.

Andaloussi, A. Benhaddou, L. Martineau, T. Vuong, B. Meddah, P. Madiraju, A. Settaf, and P. S. Haddad. 2011. The In Vivo Antidiabetic Activity of Nigella sativa is Mediated through Activation of The AMPK Pathway and Increased Muscle Glut4 Content. Hindawi Journal: 1-13.

Al-Majed A. A., H. F. Al-Qomar, M. N. Nagi. 2006. Neuroprotective Effects Of Thymoquinone Against Transient Forebrain Ischemia In The Rat Hippocampus. Eropean Journal of Pharmacology 543: 42-47.

Hannan J.M.A., P. Ansari, A. Haque, A. Sanju, A. Huzaifa, A. Rahman, A. Ghosh and S. Azam, 2019. Nigella sativa stimulates insulin secretion from isolated rat islets and inhibits the digestion and absorption of (CH2O)n in the gut, Bioscience Reports 39: 1-10.

Nehar S., H. Kauser, P. Rani and I. Alam. 2015. Effects of Nigella sativa Seed Extract on Insulin Resistant Non-insulin-Dependent Diabetic Guinea Pigs, American Journal of Ethnomedicine 2 (1): 58-67.

Elseweidy M M., R. S. Amin and H. H. Atteia, and M. A. Aly. 2018. Nigella sativa Oil and Chromium Picolinate Ameliorate Fructose-Induced Hyperinsulinemia by Enhancing Insulin Signaling and Suppressing Insulin-Degrading Enzyme in Male Rats, Biol Trace Elem Res 184: 119–126

Yadgar-Yalda R., P. G. Colman, S. Fourlanos and J. M. Wentworth. 2016. Factors associated with insulin-induced weight gain in an Australian type 2 diabetes outpatient clinic, Royal Australasian College of Physicians: 834-839.




DOI: https://doi.org/10.18860/elha.v7i3.10147

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 El-Hayah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEXING OF El-Hayah :

----------------------------------------------------------------------------------

EDITORIAL OFFICE

Department of Biology
Faculty of Science and Technology
State Islamic University Maulana Malik Ibrahim, Malang, Indonesia
Jl. Gajayana No. 50 Malang 65144
Telp./Fax: (+62 341) 558933

e-mail: elhayah@uin-malang.ac.id

E-ISSN 2657-0726 | P-ISSN 2086-0064

----------------------------------------------------------------------------------


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.