Predictive Pharmacological Activity of Galangal Rhizome (Alpinia galanga (L.) Willd.) Through in Silico Analysis as an Effort to Accelerate The Research of Indonesian Medicinal Plants
Abstract
Keywords
Full Text:
PDFReferences
Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(October 2016), 1–13. https://doi.org/10.1038/srep42717
Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W3664. https://doi.org/10.1093/nar/gkz382
Djoumbou, Yannick, Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., Bolton, E., Greiner, R., & Wishart, D. S. (2016). ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 8(1), 1–20. https://doi.org/10.1186/s13321-016-0174-y
Dong, G. zhi, Lee, S. Y., Zhao, H. Y., Lee, Y. ih, Jeong, J. H., Jeon, R., Lee, H. J., & Ryu, J. H. (2015). Diarylheptanoids from lesser galangal suppress human colon cancer cell growth through modulating Wnt/β-catenin pathway. Journal of Functional Foods, 18, 47–57. https://doi.org/10.1016/j.jff.2015.06.059
Eff, A. R. Y., & Rahayu, S. T. (2016). The antibacterial effects of essential oil from Galangal rhizome alpinia galanga (Linn.) pierreon rat (Rattus norvegicus L.) were infected by Salmonella typhi. Asian Journal of Pharmaceutical and Clinical Research, 9, 189–193.
Ferreira, L. L. G., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
Hachim, A. K. K., & Shawi, H. (2016). Biological Activity of Eugenol Acetate as Antibacterial and Antioxidant Agent, Isolation from Myrtus communis L. Essential Oil. International Journal of Bioengineering & Biotechnology, 1(2), 6–11. http://www.openscienceonline.com/journal/ijbb
Huang, H., Chen, A. Y., Rojanasakul, Y., Ye, X., Rankin, G. O., & Chen, Y. C. (2015). Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. Journal of Functional Foods, 15, 464–475. https://doi.org/10.1016/j.jff.2015.03.051
Jankun, J., Wyganowska-Swiatkowska, M., Dettlaff, K., JelinSka, A., Surdacka, A., Watróbska-Swietlikowska, D., & Skrzypczak-Jankun, E. (2016). Determining whether curcumin degradation/condensation is actually bioactivation (Review). International Journal of Molecular Medicine, 37(5), 1151–1158. https://doi.org/10.3892/ijmm.2016.2524
Kumkarnjana, S., Suttisri, R., Nimmannit, U., Sucontphunt, A., Khongkow, M., Koobkokkruad, T., & Vardhanabhuti, N. (2019). Flavonoids kaempferide and 4,2′-dihydroxy-4′,5′,6′-trimethoxychalcone inhibit mitotic clonal expansion and induce apoptosis during the early phase of adipogenesis in 3T3-L1 cells. Journal of Integrative Medicine, 17(4), 288–295. https://doi.org/10.1016/j.joim.2019.04.004
Murray, J. P., Grenyer, R., Wunder, S., Raes, N., & Jones, J. P. G. (2015). Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia. Conservation Biology, 29(5), 1434–1445. https://doi.org/10.1111/cobi.12500
Nguyen, V. S., Shi, L., Luan, F. Q., & Wang, Q. A. (2015). Synthesis of kaempferide Mannich base derivatives and their antiproliferative activity on three human cancer cell. Acta Biochimica Polonica, 62(3), 547–552. https://doi.org/10.18388/abp.2015_992
Saraphanchotiwitthaya, A., Khorana, N., & Sripalakit, P. (2019). Comparative anti-inflammatory activity of eugenol and eugenyl acetate on the murine immune response in vitro. Songklanakarin Journal of Science and Technology, 41(3), 641–648. https://doi.org/10.14456/sjst-psu.2019.68
Sastradinata, I., Andrijono, Heffen, W. L., & Sutrisna, B. (2019). The effect of ethynyl estradiol and desogestrel on proliferation and apoptosis hydatidiform mole trophoblast cell. Journal of Physics: Conference Series, 1246(1), 1–8. https://doi.org/10.1088/1742-6596/1246/1/012057
Srinivasan, E., & Rajasekaran, R. (2018). Comparative binding of kaempferol and kaempferide on inhibiting the aggregate formation of mutant (G85R) SOD1 protein in familial amyotrophic lateral sclerosis: A quantum chemical and molecular mechanics study. BioFactors, 44(5), 431–442. https://doi.org/10.1002/biof.1441
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Von Mering, C. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
Ulaszewska, M., Vázquez-Manjarrez, N., Garcia-Aloy, M., Llorach, R., Mattivi, F., Dragsted, L. O., Praticò, G., & Manach, C. (2018). Food intake biomarkers for apple, pear, and stone fruit Lars Dragsted. Genes and Nutrition, 13(1), 1–16. https://doi.org/10.1186/s12263-018-0620-8
Vega Rivera, N. M., Gallardo Tenorio, A., Fernández-Guasti, A., & Estrada Camarena, E. (2016). The post-ovariectomy interval affects the antidepressant-like action of citalopram combined with ethynyl-estradiol in the forced swim test in middle aged rats. Pharmaceuticals, 9(2), 1–12. https://doi.org/10.3390/ph9020021
Wen, P. P., Shi, S. P., Xu, H. D., Wang, L. N., & Qiu, J. D. (2016). Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics, 32(20), 3107–3115. https://doi.org/10.1093/bioinformatics/btw377
Widyowati, R., & Agil, M. (2018). Natural products chemistry of global tropical and subtropical plants. Chemical and Pharmaceutical Bulletin, 66(5), 467–468. https://doi.org/10.1248/cpb.c18-ctf6605
Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., Sayeeda, Z., Lo, E., Assempour, N., Berjanskii, M., Singhal, S., Arndt, D., Liang, Y., Badran, H., Grant, J., … Scalbert, A. (2018). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608–D617. https://doi.org/10.1093/nar/gkx1089
Zhou, R., Wu, K., Su, M., & Li, R. (2019). Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma. Environmental Toxicology and Pharmacology, 70(May), 1–5. https://doi.org/10.1016/j.etap.2019.103200
DOI: https://doi.org/10.18860/elha.v7i4.10819
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 El-Hayah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
INDEXING OF El-Hayah :
----------------------------------------------------------------------------------
EDITORIAL OFFICE
Program Study of Biology
Faculty of Science and Technology
State Islamic University Maulana Malik Ibrahim, Malang, Indonesia
Jl. Gajayana No. 50 Malang 65144
Telp./Fax: (+62 341) 558933
e-mail: elhayah@uin-malang.ac.id
E-ISSN 2657-0726 | P-ISSN 2086-0064
----------------------------------------------------------------------------------
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.