Predictive Pharmacological Activity of Galangal Rhizome (Alpinia galanga (L.) Willd.) Through in Silico Analysis as an Effort to Accelerate The Research of Indonesian Medicinal Plants

Ahmad Shobrun Jamil, Mujahidin Ahmad

Abstract


Indonesia has high biodiversity, especially plant species. There are many benefits that can be Obtained from various plants that grow in Indonesia, one of which is as a health supplement or medicinal raw material. Fast researches are important in the use of these plants so that bio-based products can be widely accepted. One of the important fast methods in analysing the benefits of plant chemical compounds is the in-silico prediction utilizing metadata spread over various pages providing scientific data about plants, their chemical compound content and biological activity. This study was focused on predictively observing the biological activity of the compounds in the rhizome of Alpinia galanga. The research method is by analysing metadata from various sources. Data on the content of chemical compounds can be accessed through the page https://phytochem.nal.usda.gov/, classification of metabolite compounds contained in plants using http://classyfire.wishartlab.com/, prediction of absorption, distribution, metabolism and excretion (ADME) uses http://www.swissadme.ch/, to determine the relationship between plant compounds and body proteins, http://www.swisstargetprediction.ch/ and prediction of cellular mechanisms seen through https://string-db.org. Based on in silico analysis by utilizing some of the above software, it can be seen that the rhizome of the Alpinia galangal plant has 80 active compounds, 47 have high bioavailability and 9 compounds with tight cell proteins. Based on in silico exploration, it is also known that A. galangal has potential as an antioxidant, antimicrobial, anti-cancer and various other pharmacological activities

Keywords


in silico; prediction; meta-data; Alpinia galanga; biological activity

Full Text:

PDF

References


Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(October 2016), 1–13. https://doi.org/10.1038/srep42717

Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W3664. https://doi.org/10.1093/nar/gkz382

Djoumbou, Yannick, Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., Bolton, E., Greiner, R., & Wishart, D. S. (2016). ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 8(1), 1–20. https://doi.org/10.1186/s13321-016-0174-y

Dong, G. zhi, Lee, S. Y., Zhao, H. Y., Lee, Y. ih, Jeong, J. H., Jeon, R., Lee, H. J., & Ryu, J. H. (2015). Diarylheptanoids from lesser galangal suppress human colon cancer cell growth through modulating Wnt/β-catenin pathway. Journal of Functional Foods, 18, 47–57. https://doi.org/10.1016/j.jff.2015.06.059

Eff, A. R. Y., & Rahayu, S. T. (2016). The antibacterial effects of essential oil from Galangal rhizome alpinia galanga (Linn.) pierreon rat (Rattus norvegicus L.) were infected by Salmonella typhi. Asian Journal of Pharmaceutical and Clinical Research, 9, 189–193.

Ferreira, L. L. G., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015

Hachim, A. K. K., & Shawi, H. (2016). Biological Activity of Eugenol Acetate as Antibacterial and Antioxidant Agent, Isolation from Myrtus communis L. Essential Oil. International Journal of Bioengineering & Biotechnology, 1(2), 6–11. http://www.openscienceonline.com/journal/ijbb

Huang, H., Chen, A. Y., Rojanasakul, Y., Ye, X., Rankin, G. O., & Chen, Y. C. (2015). Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. Journal of Functional Foods, 15, 464–475. https://doi.org/10.1016/j.jff.2015.03.051

Jankun, J., Wyganowska-Swiatkowska, M., Dettlaff, K., JelinSka, A., Surdacka, A., Watróbska-Swietlikowska, D., & Skrzypczak-Jankun, E. (2016). Determining whether curcumin degradation/condensation is actually bioactivation (Review). International Journal of Molecular Medicine, 37(5), 1151–1158. https://doi.org/10.3892/ijmm.2016.2524

Kumkarnjana, S., Suttisri, R., Nimmannit, U., Sucontphunt, A., Khongkow, M., Koobkokkruad, T., & Vardhanabhuti, N. (2019). Flavonoids kaempferide and 4,2′-dihydroxy-4′,5′,6′-trimethoxychalcone inhibit mitotic clonal expansion and induce apoptosis during the early phase of adipogenesis in 3T3-L1 cells. Journal of Integrative Medicine, 17(4), 288–295. https://doi.org/10.1016/j.joim.2019.04.004

Murray, J. P., Grenyer, R., Wunder, S., Raes, N., & Jones, J. P. G. (2015). Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia. Conservation Biology, 29(5), 1434–1445. https://doi.org/10.1111/cobi.12500

Nguyen, V. S., Shi, L., Luan, F. Q., & Wang, Q. A. (2015). Synthesis of kaempferide Mannich base derivatives and their antiproliferative activity on three human cancer cell. Acta Biochimica Polonica, 62(3), 547–552. https://doi.org/10.18388/abp.2015_992

Saraphanchotiwitthaya, A., Khorana, N., & Sripalakit, P. (2019). Comparative anti-inflammatory activity of eugenol and eugenyl acetate on the murine immune response in vitro. Songklanakarin Journal of Science and Technology, 41(3), 641–648. https://doi.org/10.14456/sjst-psu.2019.68

Sastradinata, I., Andrijono, Heffen, W. L., & Sutrisna, B. (2019). The effect of ethynyl estradiol and desogestrel on proliferation and apoptosis hydatidiform mole trophoblast cell. Journal of Physics: Conference Series, 1246(1), 1–8. https://doi.org/10.1088/1742-6596/1246/1/012057

Srinivasan, E., & Rajasekaran, R. (2018). Comparative binding of kaempferol and kaempferide on inhibiting the aggregate formation of mutant (G85R) SOD1 protein in familial amyotrophic lateral sclerosis: A quantum chemical and molecular mechanics study. BioFactors, 44(5), 431–442. https://doi.org/10.1002/biof.1441

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Von Mering, C. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131

Ulaszewska, M., Vázquez-Manjarrez, N., Garcia-Aloy, M., Llorach, R., Mattivi, F., Dragsted, L. O., Praticò, G., & Manach, C. (2018). Food intake biomarkers for apple, pear, and stone fruit Lars Dragsted. Genes and Nutrition, 13(1), 1–16. https://doi.org/10.1186/s12263-018-0620-8

Vega Rivera, N. M., Gallardo Tenorio, A., Fernández-Guasti, A., & Estrada Camarena, E. (2016). The post-ovariectomy interval affects the antidepressant-like action of citalopram combined with ethynyl-estradiol in the forced swim test in middle aged rats. Pharmaceuticals, 9(2), 1–12. https://doi.org/10.3390/ph9020021

Wen, P. P., Shi, S. P., Xu, H. D., Wang, L. N., & Qiu, J. D. (2016). Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics, 32(20), 3107–3115. https://doi.org/10.1093/bioinformatics/btw377

Widyowati, R., & Agil, M. (2018). Natural products chemistry of global tropical and subtropical plants. Chemical and Pharmaceutical Bulletin, 66(5), 467–468. https://doi.org/10.1248/cpb.c18-ctf6605

Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., Sayeeda, Z., Lo, E., Assempour, N., Berjanskii, M., Singhal, S., Arndt, D., Liang, Y., Badran, H., Grant, J., … Scalbert, A. (2018). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608–D617. https://doi.org/10.1093/nar/gkx1089

Zhou, R., Wu, K., Su, M., & Li, R. (2019). Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma. Environmental Toxicology and Pharmacology, 70(May), 1–5. https://doi.org/10.1016/j.etap.2019.103200




DOI: https://doi.org/10.18860/elha.v7i4.10819

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 El-Hayah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEXING OF El-Hayah :

----------------------------------------------------------------------------------

EDITORIAL OFFICE

Program Study of Biology
Faculty of Science and Technology
State Islamic University Maulana Malik Ibrahim, Malang, Indonesia
Jl. Gajayana No. 50 Malang 65144
Telp./Fax: (+62 341) 558933

e-mail: elhayah@uin-malang.ac.id

E-ISSN 2657-0726 | P-ISSN 2086-0064

----------------------------------------------------------------------------------


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.