Contribution of Drosophila Climbing Assay in Studying Biology and Diseases
Abstract
Keywords
References
[1] Z. Mirzoyan, M. Sollazzo, M. Allocca, A. M. Valenza, D. Grifoni, and P. Bellosta, “Drosophila melanogaster: A model organism to study cancer,” Front. Genet., vol. 10, no. 51, pp. 1–16, Mar. 2019, doi: 10.3389/fgene.2019.00051.
[2] M. Yamaguchi and H. Yoshida, “Drosophila as a model organism,” in Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, M. Yamaguchi, Ed. Springer, 2018, pp. 1–10.
[3] M. D. Rand, J. M. Tennessen, T. F. C. Mackay, and R. R. H. Anholt, “Perspectives on the Drosophila melanogaster model for advances in toxicological science,” Curr. Protoc., vol. 3, no. 8, p. e870, Aug. 2023, doi: 10.1002/cpz1.870.
[4] F. P. Fischer, R. A. Karge, Y. G. Weber, H. Koch, S. Wolking, and A. Voigt, “Drosophila melanogaster as a versatile model organism to study genetic epilepsies: An overview,” Front. Mol. Neurosci., vol. 16, p. 1116000, Feb. 2023, doi: 10.3389/fnmol.2023.1116000.
[5] V. Muha et al., “O-GlcNAcase contributes to cognitive function in Drosophila,” J. Biol. Chem., vol. 295, no. 26, pp. 8636 – 8646, 2020, doi: 10.1074/jbc.RA119.010312.
[6] T. Cao, A. Sujkowski, T. Cobb, R. J. Wessells, and J.-P. Jin, “The glutamic acid-rich-long C-terminal extension of troponin T has a critical role in insect muscle functions,” J. Biol. Chem., vol. 295, no. 12, pp. 3794 – 3807, 2020, doi: 10.1074/jbc.RA119.012014.
[7] W. Fan et al., “FARS2 deficiency in Drosophila reveals the developmental delay and seizure manifested by aberrant mitochondrial tRNA metabolism,” Nucleic Acids Res., vol. 49, no. 22, pp. 13108 – 13121, 2021, doi: 10.1093/nar/gkab1187.
[8] H. Tang, L. Zhong, Y. Xu, Z. Jin, Z. Pan, and J. Shen, “Polypropylene microplastics affect the physiology in Drosophila model,” Bull. Entomol. Res., vol. 113, no. 3, pp. 355–360, Jun. 2023, doi: 10.1017/S0007485322000633.
[9] F. Liguori, U. B. Pandey, and F. A. Digilio, “Editorial: Drosophila as a model to study neurodegenerative diseases.,” Front. Neurosci., vol. 17, p. 1275253, 2023, doi: 10.3389/fnins.2023.1275253.
[10] M. Ozaki, T. D. Le, and Y. H. Inoue, “Downregulating mitochondrial DNA polymerase γ in the muscle stimulated autophagy, apoptosis, and muscle aging-related phenotypes in drosophila adults,” Biomolecules, vol. 12, no. 8, 2022, doi: 10.3390/biom12081105.
[11] J.-K. Choi et al., “A Drosophila model of GSS syndrome suggests defects in active zones are responsible for pathogenesis of GSS syndrome,” Hum. Mol. Genet., vol. 19, no. 22, pp. 4474 – 4489, 2010, doi: 10.1093/hmg/ddq379.
[12] A. N. Spierer, D. Yoon, C.-T. Zhu, and D. M. Rand, “FreeClimber: Automated quantification of climbing performance in Drosophila,” J. Exp. Biol., Jan. 2020, doi: 10.1242/jeb.229377.
[13] S. Manjila and G. Hasan, “Flight and climbing assay for assessing motor functions in Drosophila,” BIO-PROTOCOL, vol. 8, no. 5, 2018, doi: 10.21769/BioProtoc.2742.
[14] M. C. ecili. Barone and D. Bohmann, “Assessing neurodegenerative phenotypes in Drosophila dopaminergic neurons by climbing assays and whole brain immunostaining,” J. Vis. Exp., no. 74, p. e50339, 2013, doi: 10.3791/50339.
[15] A. Aggarwal, H. Reichert, and K. VijayRaghavan, “A locomotor assay reveals deficits in heterozygous Parkinson’s disease model and proprioceptive mutants in adult Drosophila,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 49, pp. 24830 – 24839, 2019, doi: 10.1073/pnas.1807456116.
[16] W. Cao et al., “An automated rapid iterative negative geotaxis assay for analyzing adult climbing behavior in a Drosophila model of neurodegeneration,” J. Vis. Exp., vol. 2017, no. 127, 2017, doi: 10.3791/56507.
[17] L. Song et al., “Auxilin underlies progressive locomotor deficits and dopaminergic neuron loss in a Drosophila model of Parkinson’s disease,” Cell Rep., vol. 18, no. 5, pp. 1132 – 1143, 2017, doi: 10.1016/j.celrep.2017.01.005.
[18] P. G. M’Angale and B. E. Staveley, “Bax-inhibitor-1 knockdown phenotypes are suppressed by Buffy and exacerbate degeneration in a Drosophila model of Parkinson disease.,” PeerJ, vol. 5, p. e2974, 2017, doi: 10.7717/peerj.2974.
[19] E. A. S. Musachio et al., “Bisphenol A exposure is involved in the development of Parkinson like disease in Drosophila melanogaster,” Food Chem. Toxicol., vol. 137, 2020, doi: 10.1016/j.fct.2020.111128.
[20] J.-F. Guo et al., “Coding mutations in NUS1 contribute to Parkinson’s disease,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 45, pp. 11567 – 11572, 2018, doi: 10.1073/pnas.1809969115.
[21] Y. H. Siddique, F. Naz, Rahul, M. Rashid, and S. Mian, “Effect of Itrifal Muqawwi-e-Dimagh (a polyherbal drug) on the transgenic Drosophila model of Parkinson’s Disease,” Phytomedicine Plus, vol. 1, no. 4, 2021, doi: 10.1016/j.phyplu.2021.100131.
[22] Rahul, F. Naz, S. Jyoti, and Y. H. Siddique, “Effect of kaempferol on the transgenic Drosophila model of Parkinson’s disease,” Sci. Rep., vol. 10, no. 1, 2020, doi: 10.1038/s41598-020-70236-2.
[23] Y. H. Siddique, F. Naz, Rahul, M. Rashid, and Tajuddin, “Effect of Majun Baladur on life span, climbing ability, oxidative stress and dopaminergic neurons in the transgenic Drosophila model of Parkinson’s disease,” Heliyon, vol. 5, no. 4, 2019, doi: 10.1016/j.heliyon.2019.e01483.
[24] Z. Shan et al., “Effects of sevoflurane on leucine-rich repeat kinase 2-associated Drosophila model of Parkinson’s disease,” Mol. Med. Rep., vol. 11, no. 3, pp. 2062 – 2070, 2015, doi: 10.3892/mmr.2014.2966.
[25] E. J. Fernandes et al., “Exposure to lutein-loaded nanoparticles attenuates Parkinson’s model-induced damage in Drosophila melanogaster: Restoration of dopaminergic and cholinergic system and oxidative stress indicators,” Chem. Biol. Interact., vol. 340, 2021, doi: 10.1016/j.cbi.2021.109431.
[26] M. R. Poetini et al., “Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease,” Chem. Biol. Interact., vol. 279, pp. 177 – 186, 2018, doi: 10.1016/j.cbi.2017.11.018.
[27] W. Liu, K.-L. Lim, and E.-K. Tan, “Intestine-derived α-synuclein initiates and aggravates pathogenesis of Parkinson’s disease in Drosophila,” Transl. Neurodegener., vol. 11, no. 1, 2022, doi: 10.1186/s40035-022-00318-w.
[28] S. M. Pütz et al., “Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in Drosophila,” DMM Dis. Model. Mech., vol. 14, no. 6, 2021, doi: 10.1242/dmm.047811.
[29] M. E. O’Hanlon, C. Tweedy, F. Scialo, R. Bass, A. Sanz, and T. K. Smulders-Srinivasan, “Mitochondrial electron transport chain defects modify Parkinson’s disease phenotypes in a Drosophila model.,” Neurobiol. Dis., vol. 171, p. 105803, Sep. 2022, doi: 10.1016/j.nbd.2022.105803.
[30] S. Poddighe et al., “Mucuna pruriens(Velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1B9 Drosophila melanogaster genetic model of Parkinson’s disease,” PLoS One, vol. 9, no. 10, 2014, doi: 10.1371/journal.pone.0110802.
[31] M. A. Casu et al., “Neuroprotection by the immunomodulatory drug pomalidomide in the Drosophila LRRK2WD40 genetic model of parkinson’s disease,” Front. Aging Neurosci., vol. 12, 2020, doi: 10.3389/fnagi.2020.00031.
[32] B. T. Mannett, B. C. Capt, K. Pearman, L. M. Buhlman, J. M. Vandenbrooks, and G. B. Call, “Nicotine has a therapeutic window of effectiveness in a Drosophila melanogaster model of Parkinson’s disease,” Parkinsons. Dis., vol. 2022, 2022, doi: 10.1155/2022/9291077.
[33] S. K. Pirooznia et al., “PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency,” Mol. Neurodegener., vol. 15, no. 1, 2020, doi: 10.1186/s13024-020-00363-x.
[34] Y. H. Siddique, S. Jyoti, F. Naz, and Rahul, “Protective effect of luteolin on the transgenic drosophila model of Parkinson’s disease,” Brazilian J. Pharm. Sci., vol. 54, no. 3, 2018, doi: 10.1590/s2175-97902018000317760.
[35] K. E. White, D. M. Humphrey, and F. Hirth, “The dopaminergic system in the aging brain of Drosophila,” Front. Neurosci., vol. 4, no. DEC, 2010, doi: 10.3389/fnins.2010.00205.
[36] A.-R. Issa et al., “The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain,” Autophagy, vol. 14, no. 11, pp. 1898 – 1910, 2018, doi: 10.1080/15548627.2018.1491489.
[37] J. H. Sudati et al., “Valeriana officinalis attenuates the rotenone-induced toxicity in drosophila melanogaster,” Neurotoxicology, vol. 37, pp. 118 – 126, 2013, doi: 10.1016/j.neuro.2013.04.006.
[38] A. Y. Chen, P. Wilburn, X. Hao, and T. Tully, “Walking deficits and centrophobism in an α-synuclein fly model of Parkinson’s disease,” Genes, Brain Behav., vol. 13, no. 8, pp. 812 – 820, 2014, doi: 10.1111/gbb.12172.
[39] L. F. Belfiori-Carrasco, M. S. Marcora, N. I. Bocai, M. F. Ceriani, L. Morelli, and E. M. Castaño, “A novel genetic screen identifies modifiers of age-dependent amyloid β toxicity in the Drosophila brain,” Front. Aging Neurosci., vol. 9, no. MAR, 2017, doi: 10.3389/fnagi.2017.00061.
[40] I. Rogers, F. Kerr, P. Martinez, J. Hardy, S. Lovestone, and L. Partridge, “Ageing increases vulnerability to Aβ42 toxicity in Drosophila,” PLoS One, vol. 7, no. 7, 2012, doi: 10.1371/journal.pone.0040569.
[41] S. Burnouf, M. K. Gorsky, J. Dols, S. Grönke, and L. Partridge, “Aβ43 is neurotoxic and primes aggregation of Aβ40 in vivo,” Acta Neuropathol., vol. 130, no. 1, pp. 35 – 47, 2015, doi: 10.1007/s00401-015-1419-y.
[42] R. Xue et al., “dNAGLU extends life span and promotes fitness and stress resistance in Drosophila,” Int. J. Mol. Sci., vol. 23, no. 22, 2022, doi: 10.3390/ijms232214433.
[43] R. Mattioli et al., “Anti-inflammatory activity of a polyphenolic extract from arabidopsis thaliana in in vitro and in vivo models of alzheimer’s disease,” Int. J. Mol. Sci., vol. 20, no. 3, 2019, doi: 10.3390/ijms20030708.
[44] J. Tower et al., “Behavioral and molecular markers of death in Drosophila melanogaster,” Exp. Gerontol., vol. 126, 2019, doi: 10.1016/j.exger.2019.110707.
[45] Y. H. Siddique, F. Naz, Rahul, and H. Varshney, “Comparative study of rivastigmine and galantamine on the transgenic Drosophila model of Alzheimer’s disease,” Curr. Res. Pharmacol. Drug Discov., vol. 3, 2022, doi: 10.1016/j.crphar.2022.100120.
[46] S. Burnouf et al., “Deletion of endogenous Tau proteins is not detrimental in Drosophila,” Sci. Rep., vol. 6, 2016, doi: 10.1038/srep23102.
[47] A. Gandini et al., “Discovery of dual Aβ/Tau inhibitors and evaluation of their therapeutic effect on a Drosophila model of Alzheimer’s disease,” ACS Chem. Neurosci., vol. 13, no. 23, pp. 3314 – 3329, 2022, doi: 10.1021/acschemneuro.2c00357.
[48] X. Zhang et al., “Downregulation of RBO-PI4KIIIα facilitates Aβ42 secretion and ameliorates neural deficits in Aβ42-expressing Drosophila,” J. Neurosci., vol. 37, no. 19, pp. 4928 – 4941, 2017, doi: 10.1523/JNEUROSCI.3567-16.2017.
[49] G. Wei et al., “Enzyme-assisted solvent extraction of high-yield paeonia suffruticosa andr. Seed oil and fatty acid composition and anti-alzheimer’s disease activity,” J. Oleo Sci., vol. 70, no. 8, pp. 1133 – 1146, 2021, doi: 10.5650/jos.ess21040.
[50] A. Maggiore et al., “Neuroprotective effects of PARP inhibitors in Drosophila models of Alzheimer’s disease,” Cells, vol. 11, no. 8, 2022, doi: 10.3390/cells11081284.
[51] M. Arnés, N. Romero, S. Casas-Tintó, Á. Acebes, and A. Ferrús, “PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation,” Mol. Biol. Cell, vol. 31, no. 4, pp. 244 – 260, 2020, doi: 10.1091/mbc.E19-05-0303.
[52] D. M. Long et al., “Relationships between the circadian system and Alzheimer’s disease-like symptoms in Drosophila,” PLoS One, vol. 9, no. 8, 2014, doi: 10.1371/journal.pone.0106068.
[53] J. Thomas et al., “The angiotensin-converting enzyme inhibitor lisinopril mitigates memory and motor deficits in a drosophila model of alzheimer’s disease,” Pathophysiology, vol. 28, no. 2, pp. 307 – 319, 2021, doi: 10.3390/pathophysiology28020020.
[54] S. Lee et al., “The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer’s disease,” DMM Dis. Model. Mech., vol. 9, no. 3, pp. 295 – 306, 2016, doi: 10.1242/dmm.018069.
[55] C. De Gregorio, R. Delgado, A. Ibacache, J. Sierralta, and A. Couve, “Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function.,” J. Cell Sci., vol. 130, no. 20, pp. 3507–3516, Oct. 2017, doi: 10.1242/jcs.201657.
[56] V. Billesa et al., “AUTEN-67 (autophagy enhancer-67) hampers the progression of neurodegenerative symptoms in a Drosophila model of Huntington’s disease,” J. Huntingtons. Dis., vol. 5, no. 2, pp. 133 – 147, 2016, doi: 10.3233/JHD-150180.
[57] J. Varga, N. P. Dér, N. Zsindely, and L. Bodai, “Green tea infusion alleviates neurodegeneration induced by mutant Huntingtin in Drosophila,” Nutr. Neurosci., vol. 23, no. 3, pp. 183 – 189, 2020, doi: 10.1080/1028415X.2018.1484021.
[58] S. J. Banerjee et al., “iPLA2-VIA is required for healthy aging of neurons, muscle, and the female germline in Drosophila melanogaster,” PLoS One, vol. 16, no. 9 September, 2021, doi: 10.1371/journal.pone.0256738.
[59] H. H. Abdulbaki and M. A. Al-Deeb, “Chlorpyrifos-induced dopaminergic damage in Drosophila melanogaster assessed by gene expression, AChE assay, and negative geotaxis using a new feeding device,” Genet. Mol. Res., vol. 21, no. 3, 2022, doi: 10.4238/gmr19056.
[60] J.-C. Chang and D. B. Morton, “Drosophila lines with mutant and wild type human TDP-43 replacing the endogenous gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects,” PLoS One, vol. 12, no. 7, 2017, doi: 10.1371/journal.pone.0180828.
[61] R. T. Yost et al., “Abnormal social interactions in a Drosophila mutant of an autism candidate gene: Neuroligin 3,” Int. J. Mol. Sci., vol. 21, no. 13, pp. 1 – 20, 2020, doi: 10.3390/ijms21134601.
[62] D. Damschroder, C. Reynolds, and R. Wessells, “Drosophila tafazzin mutants have impaired exercise capacity,” Physiol. Rep., vol. 6, no. 3, 2018, doi: 10.14814/phy2.13604.
[63] H. Sasayama et al., “Knockdown of the Drosophila fused in sarcoma (FUS) homologue causes deficient locomotive behavior and shortening of motoneuron terminal branches,” PLoS One, vol. 7, no. 6, 2012, doi: 10.1371/journal.pone.0039483.
[64] A. M. Thackray et al., “Clearance of variant Creutzfeldt-Jakob disease prions in vivo by the Hsp70 disaggregase system,” Brain, vol. 145, no. 9, pp. 3236 – 3249, 2022, doi: 10.1093/brain/awac144.
[65] W. Gu et al., “Regular exercise rescues heart function defects and shortens the lifespan of Drosophila caused by dMnM downregulation,” Int. J. Environ. Res. Public Health, vol. 19, no. 24, 2022, doi: 10.3390/ijerph192416554.
[66] E. L. Ryan, B. DuBoff, M. B. Feany, and J. L. Fridovich-Keil, “Mediators of a long-term movement abnormality in a Drosophila melanogaster model of classic galactosemia,” DMM Dis. Model. Mech., vol. 5, no. 6, pp. 796 – 803, 2012, doi: 10.1242/dmm.009050.
[67] J. Deng et al., “Reducing the excess activin signaling rescues muscle degeneration in myotonic dystrophy type 2 Drosophila model,” J. Pers. Med., vol. 12, no. 3, 2022, doi: 10.3390/jpm12030385.
[68] A. Sujkowski, K. Richardson, M. V Prifti, R. J. Wessells, and S. V Todi, “Endurance exercise ameliorates phenotypes in Drosophila models of spinocerebellar ataxias,” Elife, vol. 11, 2022, doi: 10.7554/ELIFE.75389.
[69] A. M. Kaynar et al., “Cost of surviving sepsis: a novel model of recovery from sepsis in Drosophila melanogaster,” Intensive Care Med. Exp., vol. 4, no. 1, pp. 1 – 16, 2016, doi: 10.1186/s40635-016-0075-4.
[70] M. H. Al-Sabri et al., “Statins induce locomotion and muscular phenotypes in Drosophila melanogaster that are reminiscent of human myopathy: Evidence for the role of the chloride channel inhibition in the muscular phenotypes,” Cells, vol. 11, no. 22, 2022, doi: 10.3390/cells11223528.
[71] N. Baenas and A. E. Wagner, “Drosophila melanogaster as a model organism for obesity and type‐2 diabetes mellitus by applying high‐sugar and high‐fat diets,” Biomolecules, vol. 12, no. 2, 2022, doi: 10.3390/biom12020307.
[72] L. Tamberg et al., “Daughterless, the Drosophila orthologue of TCF4, is required for associative learning and maintenance of the synaptic proteome,” DMM Dis. Model. Mech., vol. 13, no. 7, 2020, doi: 10.1242/dmm.042747.
[73] T. C. Moulin, F. Ferro, A. Hoyer, P. Cheung, M. J. Williams, and H. B. Schiöth, “The Drosophila melanogaster levodopa-induced depression model exhibits negative geotaxis deficits and differential gene expression in males and females,” Front. Neurosci., vol. 15, 2021, doi: 10.3389/fnins.2021.653470.
[74] E. R. Reynolds, “Shortened lifespan and other age-related defects in bang sensitive mutants of drosophila melanogaster,” G3 Genes, Genomes, Genet., vol. 8, no. 12, pp. 3953 – 3960, 2018, doi: 10.1534/g3.118.200610.
[75] W. H. Eschenbacher et al., “Two rare human mitofusin 2 mutations alter mitochondrial dynamics and induce retinal and cardiac pathology in drosophila,” PLoS One, vol. 7, no. 9, 2012, doi: 10.1371/journal.pone.0044296.
[76] M. Zhao et al., “Knockdown of genes involved in axonal transport enhances the toxicity of human neuromuscular disease-linked MATR3 mutations in Drosophila,” FEBS Lett., vol. 594, no. 17, pp. 2800 – 2818, 2020, doi: 10.1002/1873-3468.13858.
[77] A. M. Muir et al., “Bi-allelic loss-of-function variants in NUP188 cause a recognizable syndrome characterized by neurologic, ocular, and cardiac abnormalities,” Am. J. Hum. Genet., vol. 106, no. 5, pp. 623 – 631, 2020, doi: 10.1016/j.ajhg.2020.03.009.
[78] B. Zhang, Z. Ding, L. Li, L.-K. Xie, Y.-J. Fan, and Y.-Z. Xu, “Two oppositely-charged sf3b1 mutations cause defective development, impaired immune response, and aberrant selection of intronic branch sites in Drosophila,” PLoS Genet., vol. 17, no. 11, 2021, doi: 10.1371/journal.pgen.1009861.
[79] A. Sujkowski, S. Rainier, J. K. Fink, and R. J. Wessells, “Delayed induction of human NTE (PNPLA6) rescues neurodegeneration and mobility defects of drosophila swiss cheese (SWS) mutants,” PLoS One, vol. 10, no. 12, 2015, doi: 10.1371/journal.pone.0145356.
[80] M. J. Ferreiro et al., “Drosophila melanogaster white mutant w1118 undergo retinal degeneration,” Front. Neurosci., vol. 11, no. JAN, 2018, doi: 10.3389/fnins.2017.00732.
[81] R. R. R. Duarte et al., “The psychiatric risk gene nt5c2 regulates adenosine monophosphate-activated protein kinase signaling and protein translation in human neural progenitor cells,” Biol. Psychiatry, vol. 86, no. 2, pp. 120 – 130, 2019, doi: 10.1016/j.biopsych.2019.03.977.
[82] S. Mendez et al., “The TreadWheel: A novel apparatus to measure genetic variation in response to gently induced exercise for Drosophila,” PLoS One, vol. 11, no. 10, 2016, doi: 10.1371/journal.pone.0164706.
[83] S. P. E S, R. P. Nayak, P. Saldanha, M. B J, and A. Prabhu, “Neuroprotectiveactivity of pyrazolone derivatives against paraquat-induced oxidative stress and locomotor impairment in Drosophila melanogaster,” Int. J. Curr. Res. Rev., vol. 12, no. 23, pp. 68–75, 2020, doi: 10.31782/IJCRR.2020.122329.
[84] C. Li et al., “Dysfunction of GRAP, encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 4, pp. 1347 – 1352, 2019, doi: 10.1073/pnas.1810951116.
[85] E. J. Shah, K. Gurdziel, and D. M. Ruden, “Drosophila exhibit divergent sex-based responses in transcription and motor function after traumatic brain injury,” Front. Neurol., vol. 11, 2020, doi: 10.3389/fneur.2020.00511.
[86] E. J. Shah, K. Gurdziel, and D. M. Ruden, “Sex-differences in traumatic brain injury in the absence of tau in Drosophila,” Genes (Basel)., vol. 12, no. 6, 2021, doi: 10.3390/genes12060917.
[87] E. N. Anderson et al., “Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology,” Elife, vol. 10, 2021, doi: 10.7554/eLife.67587.
[88] V. Chauhan and A. Chauhan, “Traumatic injury in female Drosophila melanogaster affects the development and induces behavioral abnormalities in the offspring,” Behav. Brain Funct., vol. 15, no. 1, 2019, doi: 10.1186/s12993-019-0163-1.
[89] P. Xu et al., “Atg2, Atg9 and Atg18 in mitochondrial integrity, cardiac function and healthspan in Drosophila,” J. Mol. Cell. Cardiol., vol. 127, pp. 116 – 124, 2019, doi: 10.1016/j.yjmcc.2018.12.006.
[90] J. C. Zheng et al., “Secretory Carrier Membrane Protein (SCAMP) deficiency influences behavior of adult flies,” Front. Cell Dev. Biol., vol. 2, no. NOV, 2014, doi: 10.3389/fcell.2014.00064.
[91] G. A. Kaas et al., “Lithium-responsive seizure-like hyperexcitability is caused by a mutation in the drosophila voltage-gated sodium channel gene paralytic,” eNeuro, vol. 3, no. 5, 2016, doi: 10.1523/ENEURO.0221-16.2016.
[92] E. V Ryabova et al., “Morpho‐functional consequences of swiss cheese knockdown in glia of drosophila melanogaster,” Cells, vol. 10, no. 3, pp. 1 – 20, 2021, doi: 10.3390/cells10030529.
[93] J. Azpurua, E. G. El-Karim, M. Tranquille, and J. Dubnau, “A behavioral screen for mediators of age-dependent TDP-43 neurodegeneration identifies SF2/SRSF1 among a group of potent suppressors in both neurons and glia,” PLoS Genet., vol. 17, no. 11, 2021, doi: 10.1371/journal.pgen.1009882.
[94] E. P. Ratliff et al., “Aging and autophagic function influences the progressive decline of adult Drosophila behaviors,” PLoS One, vol. 10, no. 7, 2015, doi: 10.1371/journal.pone.0132768.
[95] M. A. Jones, J. W. Gargano, D. Rhodenizer, I. Martin, P. Bhandari, and M. Grotewiel, “A forward genetic screen in Drosophila implicates insulin signaling in age-related locomotor impairment,” Exp. Gerontol., vol. 44, no. 8, pp. 532 – 540, 2009, doi: 10.1016/j.exger.2009.05.007.
[96] S. Liao, S. Broughton, and D. R. Nässel, “Behavioral senescence and aging-related changes in motor neurons and brain neuromodulator levels are ameliorated by lifespan-extending reproductive dormancy in drosophila,” Front. Cell. Neurosci., vol. 11, 2017, doi: 10.3389/fncel.2017.00111.
[97] D. Rhodenizer, I. Martin, P. Bhandari, S. D. Pletcher, and M. Grotewiel, “Genetic and environmental factors impact age-related impairment of negative geotaxis in Drosophila by altering age-dependent climbing speed,” Exp. Gerontol., vol. 43, no. 8, pp. 739 – 748, 2008, doi: 10.1016/j.exger.2008.04.011.
[98] A. Bednářová, A. Tomčala, M. Mochanová, D. Kodrík, and N. Krishnan, “Disruption of adipokinetic hormone mediated energy homeostasis has subtle effects on physiology, behavior and lipid status during aging in Drosophila,” Front. Physiol., vol. 9, no. JUL, 2018, doi: 10.3389/fphys.2018.00949.
[99] A. Ueda et al., “Two novel forms of ERG oscillation in Drosophila: age and activity dependence,” J. Neurogenet., vol. 32, no. 2, pp. 118 – 126, 2018, doi: 10.1080/01677063.2018.1461866.
[100] P. Shahrestani, J. Quach, L. D. Mueller, and M. R. Rose, “Paradoxical physiological transitions from aging to late life in Drosophila,” Rejuvenation Res., vol. 15, no. 1, pp. 49 – 58, 2012, doi: 10.1089/rej.2011.1201.
[101] R. F. Chan et al., “Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays,” Alcohol. Clin. Exp. Res., vol. 38, no. 6, pp. 1582 – 1593, 2014, doi: 10.1111/acer.12421.
[102] A. Raj, P. Shah, and N. Agrawal, “Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster,” Sci. Rep., vol. 7, no. 1, 2017, doi: 10.1038/s41598-017-15645-6.
[103] S.-H. Lee, H.-Y. Lee, E.-J. Lee, D. Khang, and K.-J. Min, “Effects of carbon nanofiber on physiology of Drosophila,” Int. J. Nanomedicine, vol. 10, pp. 3687 – 3697, 2015, doi: 10.2147/IJN.S82637.
[104] P. K. Mishra et al., “Wood-based cellulose nanofibrils: Haemocompatibility and impact on the development and behaviour of drosophila melanogaster,” Biomolecules, vol. 9, no. 8, 2019, doi: 10.3390/biom9080363.
[105] S. Yan et al., “Chronic exposure to the star polycation (SPc) nanocarrier in the larval stage adversely impairs life history traits in Drosophila melanogaster,” J. Nanobiotechnology, vol. 20, no. 1, 2022, doi: 10.1186/s12951-022-01705-1.
[106] K. Sood, J. Kaur, H. Singh, S. Kumar Arya, and M. Khatri, “Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster,” Toxicol. Reports, vol. 6, pp. 768 – 781, 2019, doi: 10.1016/j.toxrep.2019.07.009.
[107] N. Songvorawit, P. Phengphuang, and T. Khongkhieo, “Fluorescent silica nanoparticles as an internal marker in fruit flies and their effects on survivorship and fertility,” Sci. Rep., vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-24301-7.
[108] J. L. Podratz et al., “An automated climbing apparatus to measure chemotherapy-induced neurotoxicity in Drosophila melanogaster,” Fly (Austin)., vol. 7, no. 3, pp. 187 – 192, 2013, doi: 10.4161/fly.24789.
[109] J. L. Podratz et al., “Drosophila melanogaster: A new model to study cisplatin-induced neurotoxicity,” Neurobiol. Dis., vol. 43, no. 2, pp. 330 – 337, 2011, doi: 10.1016/j.nbd.2011.03.022.
[110] B. M. Baker et al., “The Drosophila brain on cocaine at single-cell resolution,” Genome Res., vol. 31, no. 10, pp. 1927 – 1937, 2021, doi: 10.1101/gr.268037.120.
[111] A. K. Lima, H. Dhillon, and A. R. Dillman, “ShK-domain-containing protein from a parasitic nematode modulates Drosophila melanogaster immunity,” Pathogens, vol. 11, no. 10, 2022, doi: 10.3390/pathogens11101094.
[112] M. R. Poetini et al., “Iron overload during the embryonic period develops hyperactive like behavior and dysregulation of biogenic amines in Drosophila melanogaster,” Dev. Biol., vol. 475, pp. 80 – 90, 2021, doi: 10.1016/j.ydbio.2021.03.006.
[113] M. P. Singh et al., “Protection of Phytoextracts against Rotenone-Induced Organismal Toxicities in Drosophila melanogaster via the Attenuation of ROS Generation,” Appl. Sci., vol. 12, no. 19, 2022, doi: 10.3390/app12199822.
[114] Z. Chen, F. Wang, D. Wen, and R. Mu, “Exposure to bisphenol A induced oxidative stress, cell death and impaired epithelial homeostasis in the adult Drosophila melanogaster midgut,” Ecotoxicol. Environ. Saf., vol. 248, 2022, doi: 10.1016/j.ecoenv.2022.114285.
[115] F. H. Figueira et al., “Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster,” Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol., vol. 202, pp. 94 – 102, 2017, doi: 10.1016/j.cbpc.2017.08.005.
[116] P. C. Lovejoy and A. C. Fiumera, “Effects of dual exposure to the herbicides atrazine and paraquat on adult climbing ability and longevity in Drosophila melanogaster,” Insects, vol. 10, no. 11, 2019, doi: 10.3390/insects10110398.
[117] X. Qiao et al., “An insecticide target in mechanoreceptor neurons,” Sci. Adv., vol. 8, no. 47, 2022, doi: 10.1126/sciadv.abq3132.
[118] T. D. Algarve, C. E. Assmann, T. Aigaki, and I. B. M. da Cruz, “Parental and preimaginal exposure to methylmercury disrupts locomotor activity and circadian rhythm of adult Drosophila melanogaster,” Drug Chem. Toxicol., vol. 43, no. 3, pp. 255–265, 2020, doi: 10.1080/01480545.2018.1485689.
[119] T. O. Johnson et al., “Benzo[a]pyrene and Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide induced locomotor and reproductive senescence and altered biochemical parameters of oxidative damage in Canton-S Drosophila melanogaster,” Toxicol. Reports, vol. 8, pp. 571 – 580, 2021, doi: 10.1016/j.toxrep.2021.03.001.
[120] P. Subramanian, K. Kaliyamoorthy, J. J. Jayapalan, P. Shafinaz Abdul-Rahman, and O. H. Hashim, “Influence of quercetin in the temporal regulation of redox homeostasis in drosophila melanogaster,” J. Insect Sci., vol. 17, no. 2, 2017, doi: 10.1093/jisesa/iex040.
[121] F. Valéria Soares de Araújo Pinho et al., “Phytochemical constituents and toxicity of duguetia furfuracea hydroalcoholic extract in Drosophila melanogaster.,” Evid. Based. Complement. Alternat. Med., vol. 2014, p. 838101, 2014, doi: 10.1155/2014/838101.
[122] B. Fernádez-Puntero, I. Barroso, I. Iglesias, J. Benedí, and A. Villar, “Antioxidant activity of Fraxetin: In vivo and ex vivo parameters in normal situation versus induced stress,” Biol. Pharm. Bull., vol. 24, no. 7, pp. 777 – 784, 2001, doi: 10.1248/bpb.24.777.
[123] G. J. T. Salazar, A. Ecker, S. A. Adefegha, and J. G. M. da Costa, “Advances in evaluation of antioxidant and toxicological properties of stryphnodendron rotundifolium mart. in Drosophila melanogaster model,” Foods, vol. 11, no. 15, 2022, doi: 10.3390/foods11152236.
[124] S. P. Balasubramani et al., “Pomegranate juice enhances healthy lifespan in Drosophila melanogaster: An exploratory study,” Front. Public Heal., vol. 2, no. DEC, 2014, doi: 10.3389/fpubh.2014.00245.
[125] Q. Wang et al., “Soft-shelled turtle peptides extend lifespan and healthspan in Drosophila,” Nutrients, vol. 14, no. 24, 2022, doi: 10.3390/nu14245205.
[126] S. N. Prasad and Muralidhara, “Neuromodulatory effects of aqueous extract of Coriandrum sativum seeds against acrylamide induced toxicity in Drosophila melanogaster,” Int. J. Res. Pharm. Sci., vol. 10, no. 2, pp. 1127 – 1135, 2019, doi: 10.26452/ijrps.v10i2.393.
[127] P. Bhandari, M. A. Jones, I. Martin, and M. S. Grotewiel, “Dietary restriction alters demographic but not behavioral aging in Drosophila,” Aging Cell, vol. 6, no. 5, pp. 631 – 637, 2007, doi: 10.1111/j.1474-9726.2007.00320.x.
[128] K. A. Wilson et al., “GWAS for lifespan and decline in climbing ability in flies upon dietary restriction reveal decima as a mediator of insulin-like peptide production,” Curr. Biol., vol. 30, no. 14, pp. 2749 – 2760.e3, 2020, doi: 10.1016/j.cub.2020.05.020.
[129] D. C. Lee et al., “Dietary supplementation with the ketogenic diet metabolite beta-hydroxybutyrate ameliorates post-tbi aggression in young-adult male drosophila,” Front. Neurosci., vol. 13, no. OCT, 2019, doi: 10.3389/fnins.2019.01140.
[130] J. Ro et al., “Serotonin signaling mediates protein valuation and aging,” Elife, vol. 5, no. AUGUST, 2016, doi: 10.7554/eLife.16843.
[131] Y. Su et al., “Alpha-ketoglutarate extends Drosophila lifespan by inhibiting mTOR and activating AMPK,” Aging (Albany. NY)., vol. 11, no. 12, pp. 4183 – 4197, 2019, doi: 10.18632/aging.102045.
[132] J. Jung, D.-I. Kim, G.-Y. Han, and H. W. Kwon, “The effects of high fat diet-induced stress on olfactory sensitivity, behaviors, and transcriptional profiling in Drosophila melanogaster,” Int. J. Mol. Sci., vol. 19, no. 10, 2018, doi: 10.3390/ijms19102855.
[133] R. P. J. Cormier, C. M. Champigny, C. J. Simard, P.-D. St-Coeur, and N. Pichaud, “Dynamic mitochondrial responses to a high-fat diet in Drosophila melanogaster,” Sci. Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-018-36060-5.
[134] S. Liao, M. Amcoff, and D. R. Nässel, “Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila,” Insect Biochem. Mol. Biol., vol. 133, 2021, doi: 10.1016/j.ibmb.2020.103495.
[135] N. Wongchum, A. Dechakhamphu, P. Panya, S. Pinlaor, S. Pinmongkhonkul, and A. Tanomtong, “Hydroethanolic Cyperus rotundus L. extract exhibits anti-obesity property and increases lifespan expectancy in Drosophila melanogaster fed a high-fat diet,” J. HerbMed Pharmacol., vol. 11, no. 2, pp. 296 – 304, 2022, doi: 10.34172/jhp.2022.35.
[136] O. Rivera, L. McHan, B. Konadu, S. Patel, S. Sint Jago, and M. E. Talbert, “A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster,” J. Comp. Physiol. B Biochem. Syst. Environ. Physiol., vol. 189, no. 2, pp. 179 – 198, 2019, doi: 10.1007/s00360-019-01209-9.
[137] D.-T. Wen, W.-Q. Wang, W.-Q. Hou, S.-X. Cai, and S.-S. Zhai, “Endurance exercise protects aging Drosophila from high-salt diet (HSD)-induced climbing capacity decline and lifespan decrease by enhancing antioxidant capacity,” Biol. Open, vol. 9, no. 5, 2020, doi: 10.1242/bio.045260.
[138] K. I. Kasozi et al., “Low concentrations of monosodium glutamate (MSG) are safe in male Drosophila melanogaster,” BMC Res. Notes, vol. 11, no. 1, 2018, doi: 10.1186/s13104-018-3775-x.
[139] I. Hubrecht, N. Baenas, C. Sina, and A. E. Wagner, “Effects of non-caloric artificial sweeteners on naïve and dextran sodium sulfate-exposed Drosophila melanogaster,” Food Front., vol. 3, no. 4, pp. 728 – 735, 2022, doi: 10.1002/fft2.147.
[140] E. Gómez et al., “Impact of probiotics on development and behaviour in Drosophila melanogaster -a potential in vivo model to assess probiotics,” Benef. Microbes, vol. 10, no. 2, pp. 179 – 188, 2019, doi: 10.3920/BM2018.0012.
[141] A. Sujkowski, B. Bazzell, K. Carpenter, R. Arking, and R. J. Wessells, “Endurance exercise and selective breeding for longevity extend Drosophila healthspan by overlapping mechanisms,” Aging (Albany. NY)., vol. 7, no. 8, pp. 535 – 552, 2015, doi: 10.18632/aging.100789.
[142] L. Zheng, Y. Feng, D. T. Wen, H. Wang, and X. S. Wu, “Fatiguing exercise initiated later in life reduces incidence of fibrillation and improves sleep quality in Drosophila,” Age (Omaha)., vol. 37, no. 4, 2015, doi: 10.1007/s11357-015-9816-7.
[143] N. Piazza, B. Gosangi, S. Devilla, R. Arking, and R. Wessells, “Exercise-training in young Drosophila melanogaster reduces age-related decline in mobility and cardiac performance,” PLoS One, vol. 4, no. 6, 2009, doi: 10.1371/journal.pone.0005886.
[144] M. Ding, L. Zheng, Q. F. Li, W. L. Wang, W. Da Peng, and M. Zhou, “Exercise-training regulates apolipoprotein B in Drosophila to improve HFD-mediated cardiac function damage and low exercise capacity,” Front. Physiol., vol. 12, 2021, doi: 10.3389/fphys.2021.650959.
[145] G. Fedele, E. W. Green, E. Rosato, and C. P. Kyriacou, “An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway,” Nat. Commun., vol. 5, 2014, doi: 10.1038/ncomms5391.
[146] J.-E. Bae et al., “Positive geotactic behaviors induced by geomagnetic field in Drosophila,” Mol. Brain, vol. 9, no. 1, 2016, doi: 10.1186/s13041-016-0235-1.
[147] R. J. Schilder and M. Raynor, “Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster,” J. Exp. Biol., vol. 220, no. 19, pp. 3508 – 3518, 2017, doi: 10.1242/jeb.160523.
[148] C. S. Kim et al., “Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior,” J. Radiat. Res., vol. 56, no. 3, pp. 475 – 484, 2015, doi: 10.1093/jrr/rru128.
[149] L. J. Sudmeier, S. P. Howard, and B. Ganetzky, “A Drosophila model to investigate the neurotoxic side effects of radiation exposure,” DMM Dis. Model. Mech., vol. 8, no. 7, pp. 669 – 677, 2015, doi: 10.1242/dmm.019786.
[150] Y. Xia, W. Xu, S. Meng, N. K. H. Lim, W. Wang, and F.-D. Huang, “An efficient and reliable assay for investigating the effects of hypoxia/anoxia on Drosophila,” Neurosci. Bull., vol. 34, no. 2, pp. 397 – 402, 2018, doi: 10.1007/s12264-017-0173-7.
[151] A. Bretman and C. Fricke, “Exposure to males, but not receipt of sex peptide, accelerates functional ageing in female fruit flies,” Funct. Ecol., vol. 33, no. 8, pp. 1459 – 1468, 2019, doi: 10.1111/1365-2435.13339.
[152] I. Krams et al., “Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster,” PeerJ, vol. 2016, no. 4, 2016, doi: 10.7717/PEERJ.2314.
[153] A. R. McNeil et al., “Conditions affecting social space in Drosophila melanogaster,” J. Vis. Exp., vol. 2015, no. 105, 2015, doi: 10.3791/53242.
[154] I. Schoberleitner, “Regulation of sensory perception and motor abilities by brain-specific action of chromatin remodeling factor CHD1,” Front. Mol. Neurosci., vol. 15, 2022, doi: 10.3389/fnmol.2022.840966.
[155] Y. Sun, L. Liu, Y. Ben-Shahar, J. S. Jacobs, D. F. Eberl, and M. J. Welsh, “TRPA channels distinguish gravity sensing from hearing in Johnston’s organ,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 32, pp. 13606 – 13611, 2009, doi: 10.1073/pnas.0906377106.
[156] P. G. M’Angale and B. E. Staveley, “Knockdown of the putative Lifeguard homologue CG3814 in neurons of Drosophila melanogaster,” Genet. Mol. Res., vol. 15, no. 4, 2016, doi: 10.4238/gmr15049290.
[157] Z. Zhang et al., “METTL14 Regulates Intestine Cellular Senescence through m6A Modification of Lamin B Receptor,” Oxid. Med. Cell. Longev., vol. 2022, 2022, doi: 10.1155/2022/9096436.
[158] J. Fernandes and J. Varghese, “Sexually dimorphic microRNA miR-190 regulates lifespan in male Drosophila,” RNA Biol., vol. 19, no. 1, pp. 1085 – 1093, 2022, doi: 10.1080/15476286.2022.2127544.
[159] J. Sun et al., “Neural control of startle-induced locomotion by the mushroom bodies and associated neurons in drosophila,” Front. Syst. Neurosci., vol. 12, 2018, doi: 10.3389/fnsys.2018.00006.
[160] A. Eriksson et al., “Neuromodulatory circuit effects on Drosophila feeding behaviour and metabolism,” Sci. Rep., vol. 7, no. 1, 2017, doi: 10.1038/s41598-017-08466-0.
[161] H. Augustin, J. Adcott, C. J. H. Elliott, and L. Partridge, “Complex roles of myoglianin in regulating adult performance and lifespan,” Fly (Austin)., vol. 11, no. 4, pp. 284 – 289, 2017, doi: 10.1080/19336934.2017.1369638.
[162] I. Devambez et al., “Identification of DmTTLL5 as a major tubulin glutamylase in the Drosophila nervous system,” Sci. Rep., vol. 7, no. 1, 2017, doi: 10.1038/s41598-017-16586-w.
[163] S. E. El-Kholy, B. Afifi, I. El-Husseiny, and A. Seif, “Octopamine signaling via OctαR is essential for a well-orchestrated climbing performance of adult Drosophila melanogaster,” Sci. Rep., vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-18203-x.
[164] D. L. Clayton, “Circadian and geotactic behaviors: Genetic pleiotropy in Drosophila melanogaster,” J. Circadian Rhythms, vol. 14, no. 1, pp. 1 – 5, 2016, doi: 10.5334/jcr.140.
[165] E. S. Pak and A. K. Murashov, “Drosophila passive avoidance behavior as a new paradigm to study associative aversive learning,” J. Vis. Exp., vol. 2021, no. 176, 2021, doi: 10.3791/63163.
[166] N. Dravecz et al., “Reduced insulin signaling targeted to serotonergic neurons but not other neuronal subtypes extends lifespan in Drosophila melanogaster,” Front. Aging Neurosci., vol. 14, 2022, doi: 10.3389/fnagi.2022.893444.
[167] M. Z. B. H. Ismail, M. D. Hodges, M. Boylan, R. Achall, A. Shirras, and S. J. Broughton, “The Drosophila insulin receptor independently modulates lifespan and locomotor senescence,” PLoS One, vol. 10, no. 5, 2015, doi: 10.1371/journal.pone.0125312.
[168] J. Zhu, J.-G. Lee, J. van de Leemput, H. Lee, and Z. Han, “Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenic effects with Selinexor as an effective treatment,” Cell Biosci., vol. 11, no. 1, 2021, doi: 10.1186/s13578-021-00567-8.
[169] A. Pooryasin and A. Fiala, “Identified serotonin-releasing neurons induce behavioral quiescence and suppress mating in drosophila,” J. Neurosci., vol. 35, no. 37, pp. 12792 – 12812, 2015, doi: 10.1523/JNEUROSCI.1638-15.2015.
[170] V. L. Barnes, A. Bhat, A. Unnikrishnan, A. R. Heydari, R. Arking, and L. A. Pile, “SIN3 is critical for stress resistance and modulates adult lifespan,” Aging (Albany. NY)., vol. 6, no. 8, pp. 645 – 660, 2014, doi: 10.18632/aging.100684.
[171] D. B. Jørgensen, M. Ørsted, and T. N. Kristensen, “Sustained positive consequences of genetic rescue of fitness and behavioural traits in inbred populations of Drosophila melanogaster,” J. Evol. Biol., vol. 35, no. 6, pp. 868 – 878, 2022, doi: 10.1111/jeb.14015.
[172] E. Bier, “Drosophila, the golden bug, emerges as a tool for human genetics,” Nat. Rev. Genet., vol. 6, no. 1, pp. 9–23, Jan. 2005, doi: 10.1038/nrg1503.
[173] M. E. Fortini, M. P. Skupski, M. S. Boguski, and I. K. Hariharan, “A Survey of human disease gene counterparts in the Drosophila genome,” J. Cell Biol., vol. 150, no. 2, pp. F23–F30, Jul. 2000, doi: 10.1083/jcb.150.2.F23.
[174] B. Ugur, K. Chen, and H. J. Bellen, “Drosophila tools and assays for the study of human diseases,” Dis. Model. Mech., vol. 9, no. 3, pp. 235–244, Mar. 2016, doi: 10.1242/dmm.023762.
[175] S. Yamamoto et al., “A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases,” Cell, vol. 159, no. 1, pp. 200–214, Sep. 2014, doi: 10.1016/j.cell.2014.09.002.
[176] K. G. Hales, C. A. Korey, A. M. Larracuente, and D. M. Roberts, “Genetics on the Fly: A primer on the Drosophila model system,” Genetics, vol. 201, no. 3, pp. 815–842, Nov. 2015, doi: 10.1534/genetics.115.183392.
[177] C. D. Nichols, J. Becnel, and U. B. Pandey, “Methods to assay Drosophila behavior,” J. Vis. Exp., no. 61, Mar. 2012, doi: 10.3791/3795.
[178] M. D. Rand, “Drosophotoxicology: The growing potential for Drosophila in neurotoxicology,” Neurotoxicol. Teratol., vol. 32, no. 1, pp. 74–83, Jan. 2010, doi: 10.1016/j.ntt.2009.06.004.
DOI: https://doi.org/10.18860/elha.v9i4.29973
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 El-Hayah:Jurnal Biologi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
INDEXING OF El-Hayah :
----------------------------------------------------------------------------------
EDITORIAL OFFICE
Program Study of Biology
Faculty of Science and Technology
State Islamic University Maulana Malik Ibrahim, Malang, Indonesia
Jl. Gajayana No. 50 Malang 65144
Telp./Fax: (+62 341) 558933
e-mail: elhayah@uin-malang.ac.id
E-ISSN 2657-0726 | P-ISSN 2086-0064
----------------------------------------------------------------------------------
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.