Study of Fly’s Behavior as a Parameter of The Impact of Toxic Compounds on Living Things

Siti Zubaidah, Deny Setiawan, Muhamad Justitia Ramadhan, Natasya Adiba Zahrah, Sinta Kharomah, Wachidah Hayuana, Muhammad Iqbal Najib Fahmi, Ahmad Fauzi

Abstract


Various toxic compounds still often contaminate the environment and food of living things to this day. Drosophila is often used as a model organism to study the negative effects of exposure to toxic compounds on organisms. The purpose of this systematic literature review (SLR) is to analyze the distribution, contribution, and gap analysis of studies reporting the effect of toxic compounds on behavior in Drosophila. After conducting a search in the Scopus database, 57 titles that matched the entered search query were obtained. After selection and evaluation step, a total of 19 Scopus indexed articles that met the inclusion and exclusion criteria were successfully collected for analysis. The three countries that most frequently research Drosophila behavior are the US, China, and Nigeria. A total of 5 clusters resulted from the results of bibliometric analysis. Various behavioral studies have included developmental variables, gene expression, to the Circadian clock. Toxic compounds that are often studied generally come from the group of metal compounds. On the other hand, multigenerational studies to analyze the long-term effects of toxic compounds and the plasticity of phenotypic changes into gap analysis have been successfully identified.

Keywords


Drosophila, Fly behavior, Toxicology

Full Text:

PDF

References


[1] Bjørklund G., Dadar M., Mutter J. and Aaseth J. 2017. The toxicology of mercury: Current research and emerging trends. Environmental Research 159: 545-554.

[2] Chae Y. and An Y-J. 2018. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A Review. Environmental Pollution 240: 387-395.

[3] Mostafalou S. and Abdollahi M. 2017.Pesticides: an update of human exposure and toxicity. Archives of Toxicology 91(2): 549-599.

[4] Damalas C. and Koutroubas S. 2016. Farmers' Exposure to Pesticides: Toxicity Types and Ways of Prevention Toxics 4(1): 1.

[5] Patocka J., Wu R., Nepovimova E., Valis M., Wu W. and Kuca K. 2021.Chemistry and toxicology of major bioactive substances in inocybe mushrooms. International Journal of Molecular Sciences22(4): 2218.

[6] Myatt G. J. et al. 2018. In silico toxicology protocols. In silico toxicology protocols96: 1-17.

[7] Sudmeier L.J., Howard S.P. and Ganetzky B. 2015.A Drosophila model to investigate the neurotoxic side effects of radiation exposure. Disease Models & Mechanisms 8 (7): 669–677.

[8] Sood K., Kaur J., Singh H., Arya S.K. and Khatri M. 2019.Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicology Reports 6: 768-781

[9] Zhao M., Kao C.S., Arndt C., Tran D.D., Cho W.I., Maksimovic K., Chen X.X, Khan M., Zhu H., Qiao J. and Peng K. 2020. Knockdown of genes involved in axonal transport enhances the toxicity of human neuromuscular disease-linked MATR3 mutations in Drosophila. FEBS Letters. 594(17): 2800–2818

[10] Mirzoyan Z., Sollazzo M., Allocca M., Valenza A.M., Grifoni D. and Bellosta P. 2019. Drosophila melanogaster: a model organism to study cancer. Frontier in Genetic 10: 51.

[11] Yamaguchi M. and Yoshida H. 2018. Drosophila as a model organism Drosophila Models for Human Diseases Advances in Experimental Medicine and Biology ed M Yamaguchi (Springer), p. 1–10

[12] Fischer F P, Karge R A, Weber Y G, Koch H, Wolking S and Voigt A. 2023. Drosophila melanogaster as a versatile model organism to study genetic epilepsies: An overview. Frontiers in Molecular Neuroscience 16

[13] Muha V., Fenckova M., Ferenbach A.T., Catinozzi M., Eidhof I., Storkebaum E., Schenck A. and van Aalten D.M. 2020. O-GlcNAcase contributes to cognitive function in Drosophila. Journal of Biological Chemistry. 295(26): 8636–8646.

[14] Cao T., Sujkowski A., Cobb T., Wessells R. J and Jin J-P. 2020. The glutamic acid-rich–long C-terminal extension of troponin T has a critical role in insect muscle functions. Journal of Biological Chemistry 295(12): 3794-3807.

[15] Ozaki M., Le T.D. and Inoue Y.H. 2022. Downregulating Mitochondrial DNA polymerase γ in the muscle stimulated autophagy, apoptosis, and muscle aging-related phenotypes in drosophila Adults Biomolecules 12(8): 1105.

[16] Choi J.K, Jeon Y.C., Lee D.W., Oh J.M., Lee H.P., Jeong B.H., Carp R.I., Koh Y.H. and Kim Y.S. 2010. A Drosophila model of GSS syndrome suggests defects in active zones are responsible for pathogenesis of GSS syndrome. Human molecular genetics 19(22): 4474–4489.

[17] Fan W., Jin X., Xu M., Xi Y., Lu W., Yang X., Guan M.X., Ge W. 2021. FARS2 deficiency in Drosophila reveals the developmental delay and seizure manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Research 49: 13108–13121.

[18] Ro J., Harvanek Z.M. and Pletcher S.D. 2014. FLIC: High-Throughput, Continuous Analysis of Feeding Behaviors in Drosophila. PLoS One 9: 6

[19] Babcock D.T. and Ganetzky B. 2014. An improved method for accurate and rapid measurement of flight performance in Drosophila. Journal of Visualized Experemients (84): 51223.

[20] Sujkowski A. and Wessells R. 2018. Using Drosophila to Understand Biochemical and Behavioral Responses to Exercise. Exercise and Sport Sciences Reviews 46(2): 112–120.

[21] Apostolopoulou A.A., Mazija L., Wüst A. and Thum A.S. 2014. Composition of agarose substrate affects behavioral output of Drosophila larvae. Frontiers in Behavioral Neuroscience 8

[22] French A.S., Sellier M.J., Agha M.A., Guigue A., Chabaud M.A., Reeb P.D., Mitra A., Grau Y., Soustelle L. and Marion-Poll F. 2015.Dual mechanism for bitter avoidance in Drosophila. Journal of Neuroscience 35: 9.

[23] Khatun S., Mandi M., Rajak P. and Roy S. 2018. Interplay of ROS and behavioral pattern in fluoride exposed Drosophila melanogaster. Chemosphere 209: 220-231.

[24] Pankau C., Nadolski J., Tanner H., Cryer C., Di Girolamo J., Haddad C., Lanning M., Miller M., Neely D., Wilson R. and Whittinghill B. 2022. Examining the effect of manganese on physiological processes: Invertebrate modelsComparative Biochemistry and Physiology 251: 109209.

[25] Yan S., Li N., Guo Y., Chen Y., Ji C., Yin M., Shen J. and Zhang J. 2022. Chronic exposure to the star polycation (SPc) nanocarrier in the larval stage adversely impairs life history traits in Drosophila melanogaster. Journal of Nanobiotechnology20: 515

[26] Green L., Coronado-Zamora M, Radío S, Rech G.E., Salces-Ortiz J. and González J. 2022. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biologi 20 1.

[27] Xiao S, Baik L.S., Shang X. and Carlson J.R. 2022. Meeting a threat of the Anthropocene: Taste avoidance of metal ions by Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 119(25):e2204238119.

[28] Algarve T.D., Assmann C.E., Aigaki T. and da Cruz I.B.M. 2020. Parental and preimaginal exposure to methylmercury disrupts locomotor activity and circadian rhythm of adult Drosophila melanogaster. Drug and Chemical Toxicology43: 255–265.

[29] Ibraheem O et al. 2022. Ackee (Blighia sapida K.D. Koenig) leaves and arils methanolic extracts ameliorate cdcl2-induced oxidative stress biomarkers in Drosophila melanogaster. Oxidative Medicine and Cellular Longevity. 2022: 3235031

[30] Zhang Y., Wolosker M.B., Zhao Y., Ren H. and Lemos B. 2020. Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. The Science of the Total Environment 744: 140979

[31] Ibraheem O., Bankole D., Adedara A., Abolaji A.O., Fatoki T.H., Ajayi J.M. and Eze C.T. 2021. Methanolic Leaves and Arils Extracts of Ackee (Blighia sapida) Plant ameliorate mercuric chloride-induced oxidative stress in Drosophilamelanogaster. Biointerface Research in Applied Chemistry 11: 7528-7542.

[32] Peppriell A.E., Gunderson J.T., Krout I.N., Vorojeikina D. and Rand M.D. 2021. Latent effects of early-life methylmercury exposure on motor function in Drosophila Neurotoxicology and Teratology 88: 107037

[33] Peppriell A.E., Gunderson J.T., Vorojeikina D., Rand M.D. (2020). Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology 443: 152561.

[34] Ohiomokhare S., Olaolorun F., Ladagu A., Olopade F., Howes M.J., Okello E., Olopade J., Chazot P.L. 2020. The Pathopharmacological Interplay between Vanadium and Iron in Parkinson’s Disease Models International Journal of Molecular Sciences21(18): 6719.

[35] Peterson E.K., Yukilevich R., Kehlbeck J., LaRue K.M., Ferraiolo K., Hollocher K., Hirsch H.V. and Possidente B. 2017. Integrative behavioral ecotoxicology: bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation Current. Zoology 63 (2): 185–194

[36] Abolaji A.O., Kamdem J.P., Lugokenski T.H., Farombi E.O., Souza D.O., da Silva Loreto É.L. and Rocha J.B. 2015. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster Redox Biology5: 328–339.

[37] Wu Q., Du X., Feng X., Cheng H., Chen Y., Lu C., Wu M. and Tong H. 2021. Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster Ecotoxicology and Environmental Safety 225: 112739

[38] Hückesfeld S., Peters M. and Pankratz M.J. 2016. Central relay of bitter taste to the protocerebrum by peptidergic interneurons in the Drosophila brain Nature Communications13(7): 12796.

[39] Eom H.J., Liu Y., Kwak G.S., Heo M., Song K.S., Chung Y.D., Chon T.S. and Choi J. 2017. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses. Scientific Reports 7: 1-15.

[40] Bushnell P.J., Ward W.O., Morozova T.V., Oshiro W.M., Lin M.T., Judson R.S., Hester S.D., McKee J.M. and Higuchi M. 2017. Editor's highlight: genetic targets of acute toluene inhalation in Drosophila melanogaster. Toxicological Sciences156: 230–239.

[41] Williams M.J., Wiemerslage L., Gohel P., Kheder S., Kothegala L.V. and Schiöth H.B. 2016. Dibutyl phthalate exposure disrupts evolutionarily conserved insulin and glucagon-like signaling in Drosophila males Endocrinology 157(6): 2309–2321

[42] Free C.M., Jensen O.P., Mason S.A., Eriksen M., Williamson N.J. and Boldgiv B. 2014. High-levels of microplastic pollution in a large, remote, mountain lake Marine Pollution Bulletin85(1):156-63.

[43] Chia R.W., Lee J-Y., Kim H. and Jang J. 2021. Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters19 (6): 4211 – 4224.

[44] Sul J.A.I. and Costa M.F. 2014. The present and future of microplastic pollution in the marine environment Environmental Pollution 185: 352-364.

[45] Xu C., Zhang B., Gu C., Shen C., Yin S., Aamir M. and Li F. 2020. Are we underestimating the sources of Microplastic pollution in terrestrial environment? Journal of Hazardous Materials400: 123228.

[46] Wahlang B. 2018. Exposure to persistent organic pollutants: impact on women's health. Reviews on Environmental Health33(4): 331-348.

[47] Arrebola J.P., Fernández M.F., Olea N., Ramos R. and Martin-Olmedo P. 2013. Human Exposure to p,p’-Dichlorodiphenyldichloroethylene (p,p’-DDE) in urban and semi-rural areas in Southeast Spain: A Gender Perspective. Science of The Total Environment 458–460: 209–216.

[48] Carneiro M., Gutiérrez-Praena D., Osório H., Vasconcelos V., Carvalho A.P. and Campos A. 2015. Proteomic analysis of anatoxin-a acute toxicity in zebrafish reveals gender specific responses and additional mechanisms of cell stress. Ecotoxicology and Environmental Safety120: 93-101.

[49] Le Manach S., Khenfech N., Huet H., Qiao Q., Duval C., Marie A., Bolbach G., Clodic G., Djediat C., Bernard C. and Edery M. 2016. Gender-Specific Toxicological Effects of Chronic Exposure to Pure Microcystin-LR or Complex Microcystis aeruginosa Extracts on Adult Medaka Fish Environmental Science & Technology. 50: 8324–8334.

[50] Kander M.C., Cui Y. and Liu Z. 2017. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. Journal of Cellular and Molecular Medicine 21(5): 1024-1032.

[51] Mattsson K., Ekvall M.T., Hansson L-A, Linse S., Malmendal A. and Cedervall T. 2015. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environmental Science & Technology. 49(1): 553-61.

[52] Lee H.K. and Pak Y.K. 2018. Persistent organic pollutants, mitochondrial dysfunction, and metabolic syndrome. Wiley online library691–707.

[53] Zhang L., Nichols R.G., Correll J., Murray I.A., Tanaka N., Smith P.B., Hubbard T.D., Sebastian A., Albert I., Hatzakis E., Gonzalez F.J., Perdew G.H., Patterson A.D. 2015. Persistent Organic Pollutants Modify Gut Microbiota-Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation Environmental Health Perspectives 123(7): 679-688.

[54] Thomson E.M., Vladisavljevic D., Mohottalage S., Kumarathasan P. and Vincent R. 2013. Mapping acute systemic effects of inhaled particulate matter and ozone: multiorgan gene expression and glucocorticoid activity. Toxicological Sciences 135: 169–181.




DOI: https://doi.org/10.18860/elha.v9i4.29974

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 El-Hayah:Jurnal Biologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEXING OF El-Hayah :

----------------------------------------------------------------------------------

EDITORIAL OFFICE

Program Study of Biology
Faculty of Science and Technology
State Islamic University Maulana Malik Ibrahim, Malang, Indonesia
Jl. Gajayana No. 50 Malang 65144
Telp./Fax: (+62 341) 558933

e-mail: elhayah@uin-malang.ac.id

E-ISSN 2657-0726 | P-ISSN 2086-0064

----------------------------------------------------------------------------------


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.