Analisis Jejaring Farmakologi Tanaman Jati Belanda (Guazuma ulmifolia Lamk.) Sebagai Imunomodulator
Abstract
Covid-19 merupakan wabah penyakit yang menginfeksi sistem pernafasan pada manusia. Kasusnya terjadi hampir di seluruh negara di dunia dan keberadaannya sangat meresahkan karena penyebarannya terjadi dengan sangat cepat. Salah satu upaya yang dapat dilakukan untuk mencegah penyebaran penyakit Covid-19 adalah dengan meningkatkan sistem imun. Sistem imun melindungi tubuh dari infeksi dengan memproduksi molekul protein yang disebut antibodi yang mengikat antigen agen infeksi. Berdasarkan studi literatur yang telah dilakukan, beberapa tanaman lokal Indonesia memiliki potensi sebagai imunomodulator. Fokus penelitian ini ditujukan untuk mengetahui jejaring protein yang terkait dengan sistem imun tubuh yang teraktivasi karena pemberian ekstrak tanaman jati belanda (Guazuma ulmifolia Lamk.). Metode penelitian yang digunakan adalah deskriptif eksploratif berdasarkan online database dan web server (KNApSAck Family, Dr. Duke’s Phytochemical and Ethnobotanical Databases, SwissTargetPrediction, GeneCards, SwissADME, Venny, dan StringDB). Berdasarkan hasil penelitian, tanaman G. ulmifolia mengandung 17 senyawa metabolit sekunder, lima diantaranya memiliki bioavailabilitas yang tinggi meliputi ent-catechin, (-)-epigallocatechin, caffeine, kaempferol, dan quercetin. Senyawa (-)-epigallocatechin diprediksi dapat berinteraksi dengan MAPK14 yang memiliki koneksi dengan lima jalur penting dalam imunomodulator yaitu Fc epsilon RI signaling pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer, THF17 cell differentiation, TNF signaling pathway, dan IL-17 signaling pathway.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Alkautsar A. Hubungan Penyakit Komorbid dengan Tingkat Keparahan Pasien Covid-19. Jurnal Medika Hutama. 2021; 03(01): 1488–1494.
Saharani SM, Yuniastuti A, Susanti R, and Nugrahaningsih, WH. Identifikasi Senyawa Bioaktif Tanaman Syzygium aromaticum sebagai Imunostimulan Melalui Toll-Like Receptor Signaling Pathway Berdasarkan Interaksi Senyawa-Protein Secara In Silico. 2021. Prosiding Semnas Biologi ke-9 Tahun 2021. Indonesia: Semarang.
Oktavia D and Muksin NN. Edukasi Tentang Upaya Meningkatkan Imunitas Tubuh di Masa Pandemi Covid-19 di Ruang Lingkup Karang Taruna dan Forkomdarisma RW.09 Cirendeu, Ciputat Timur. 2021. Seminar Nasional Pengabdian Masyarakat LPPM UMJ. Indonesia: Jakarta.
Perdana PGRW. Review Artikel : Aktivitas Imunomodulator Ekstrak Herba Meniran (Phyllanthus niruri L.). Jurnal Farmasi Malahayati. 2021; 4(1): 44–52.
Kusnul Z. Infeksi Covid-19 dan Sistem Imun : Peran Pengobatan Herbal Berbasis Produk Alam Berkhasiat. Jurnal Ilmiah Pamenang. 2020; 2(2): 25-30.
Rahadianti D and Herlinawati. Sistem Imunitas Alamiah dan Sistem Imunitas Adaftif. Nusantara Hasana Journal. 2022; 2(3): 98-106.
Purwanto. Potensi Tumbuhan Obat Unggul Indonesia. Biospektrum Jurnal Biologi. 2022; 1(1): 51-57.
Rhomah EH and Safitri D. Pharmacological Activities of Guazuma ulmifolia. Jurnal Info Kesehatan. 2021; 11(1): 414-419.
Lumbantobing ZR, Muhartono, and Mutiara UG. Jati Belanda (Guazuma ulmifolia Lamk.) sebagai Terapi Alternatif Obesitas. Medula. 2019; 8(2): 161–167.
Wen PP, Shi SP, Xu HD, Wang LN, and Qiu JD. Accurate in-silico prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics. 2016; 32(20): 3107–3115.
Afendi FA, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, and Kanaya S. Plant and Cell Physiology. 2012; 53(2): e1(1-12).
U.S. Department of Agriculture, Agricultural Research Service. 1992-2016. Dr. Duke's Phytochemical and Ethnobotanical Databases [ONLINE]. Available from: https://phytochem.nal.usda.gov/.
Daina A, Michielin O, and Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017; 7(42717).
Daina A and Zoete MA. BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem, 2016; 11(11): 1109-1187.
Daina A, Michielin O, and Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research. 2019; 47(W1): W357–W364.
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary, D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, and Lancet D. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analysis. Current Protocols in Bioinformatics. 2016; 54: 1.30.1-1.30.33.
Oliveros, JC. 2007-2015. Venny. An interactive tool for comparing lists with Venn's diagrams [ONLINE]. Available from: https://bioinfogp.cnb.csic.es/tools/venny/index.html.
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, and von Mering C. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research. 2021; 49(D1): D605-612.
Kanehisa M, Furumichi M, Sato Y, Kawashima M, and Ishiguro-Watanabe M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587-D592.
Labibah L and Rusdiana T. Review Artikel: Hubungan Jenis Kelamin terhadap Eksipien Farmasi dalam Mempengaruhi Bioavailabilitas Obat. Majalah Farmasetika. 2022; 7(3): 176-188.
Pawankar R. Mast cells as orchestrators of the allergic reaction: the IgE-IgE receptor mast cell network. Current Opinion in Allergy and Clinical Immunology. 2001; 1(1): 3-6.
National Cancer Institute. (2019). Immune checkpoint inhibitors [ONLINE]. Available from https://www.cancer.gov/publications/dictionaries/cancer-terms/def/immune-checkpoint-inhibitor.
Singh B, Schwartz JA, Sandrock C, Bellemore SM, and Nikoopour E. Modulation of autoimmune diseases by interleukin (IL)-17 producing regulatory T helper (Th17) cells. Indian Journal of Medical Research. 2013; 138(5): 591–594.
Meijer FA, Doveston RG, de Vries RMJM, Vos GM, Vos AAA, Leysen S, Scheepstra M, Ottmann C, Milroy LG, and Brunsveld L. Ligand-Based Design of Allosteric Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Inverse Agonists. Journal of Medicinal Chemistry. 2020; 63(1): 241-259.
Singh S, Sahu K, Singh C, and Singh A. Lipopolysaccharide induced altered signaling pathways in various neurological disorders. Naunyn-Schmiedeberg's Archives of Pharmacology. 2022; 395(3): 285-294.
Moseley TA, Haudenschild DR, Rose L, and Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine & growth factor reviews. 2003; 14(2): 155-174.
Lo U, Selvaraj V, Plane JM, Chechneva OV, Otsu K, and Denga W. p38α (MAPK14) critically regulates the immunological response and the production of specific cytokines and chemokines in astrocytes. Scientific Reports. 2014; 4(7405).
DOI: https://doi.org/10.18860/jip.v8i1.20782
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Islamic Pharmacy
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2023 Journal of Islamic Pharmacy