Molecular Docking of Hygrophila auriculata (Schum.) Heine Compounds Targeting PBP2 Protein in Neisseria gonorrhoeae
Abstract
Antibiotic resistance in gonorrhoea cases and patients is detrimental. Amidst the rising cases of gonorrhoea caused by Neisseria gonorrhoeae, Hygrophila auriculata (Schum.) Heine has activity as an antibiotic for the disease. The penicillin-binding protein 2 (PBP2) is a transpeptidase that catalyses the formation of cross-bridges on bacterial cell wall peptidoglycan, which will be the target of this plant. The purpose of molecular docking study is to see the binding affinity, compounds in Hygrophila auriculata (Schum.) Heine and ceftriaxone which is used as a comparison drug, will be targeted at PBP protein. Discovery studio visualizer v21.1.0.20298 was used for PBP2 protein preparation and visualisation. DoG Site Scorer was used to predict ligand binding sites on PBP2 proteins. PyRx 0.8 was used for virtual screening, validating of the docking method, and ligand preparation. Compounds in Hygrophila auriculata (Schum.) Heine as ligands were derived from MPDB 2.0 and the following PubChem codes; apigenin CID 5280443, luteolin CID 5280445, allagic acid CID 5281855, gallic acid CID 370, quercetin CID 5280343, lupeol CID 259846, lupenone CID 92158, betulin CID 72326, stigmasterol CID 5280794, and comparator drug ceftriaxone CID 447043. The binding affinity of ellagic acid -9,8 from Hygrophila auriculata (Schum.) Heine was lower than ceftriaxone -9,4 on the target PBP2 protein. Some of the amino acid residues that appear in protein-ligand docking include: ALA A:310, THR A:500 and 347, LYS A:313, and SER A:362. These amino acid residues owned by the PBP2 protein serve as the bonding bridge. Ellagic acid, the compound has potential as an antibiotic in gonorrhoea. Further testing and studies are needed to strengthen the evidence of the findings in this study
Keywords
Full Text:
PDFReferences
Gonorrhoea (Neisseria gonorrhoeae infection) [Internet]. [cited 2024 Nov 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/gonorrhoea-(neisseria-gonorrhoeae-infection)
WHO Guidelines for the Treatment of Neisseria gonorrhoeae [Internet]. Geneva: World Health Organization; 2016 [cited 2024 Nov 2]. (WHO Guidelines Approved by the Guidelines Review Committee). Available from: http://www.ncbi.nlm.nih.gov/books/NBK379221/
Unemo M, Shafer WM. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Annals of the New York Academy of Sciences. 2011 Aug;1230:E19. doi: https://doi.org/10.1111/j.1749-6632.2011.06215.x
Hygrophila auriculata | PlantZAfrica [Internet]. [cited 2024 Nov 2]. Available from: https://pza.sanbi.org/hygrophila-auriculata
Lekha G, Deepika E, Swetha S, Kanagarajan A, Gayathridevi V, Santhy KS. In vivo Evaluation of Antimicrobial, Antipyretic, Analgesic, and Anti‑Inflammatory Activities of Nilavembu Kudineer Capsule in Comparison with Siddha Classical Nilavembu Kudineer. Pharmacognosy Research. 2020;12(4):387–93. doi: http://dx.doi.org/10.4103/pr.pr_23_20
Fenton BA, Tomberg J, Sciandra CA, Nicholas RA, Davies C, Zhou P. Mutations in PBP2 from ceftriaxone-resistant Neisseria gonorrhoeae alter the dynamics of the β3–β4 loop to favor a low-affinity drug-binding state. J Biol Chem. 2021 Sep 13;297(4):101188. doi: https://doi.org/10.1016/j.jbc.2021.101188
Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev. 2006 Sep;30(5):673–91. doi: https://doi.org/10.1111/j.1574-6976.2006.00024.x
Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008 Mar;32(2):234–58. doi: https://doi.org/10.1111/j.1574-6976.2008.00105.x
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, et al. Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae. Journal of Biological Chemistry. 2018 Jan 26;293(4):1106–19. doi: https://doi.org/10.1074/jbc.ra117.000437
Accerlrys Enterprise Platform. Introduction to the Discovery Studio Visualizer. Accelrys Software Inc. 2005.
Volkamer A, Griewel A, Grombacher T, Rarey M. Analyzing the Topology of Active Sites: On the Prediction of Pockets and Subpockets. J Chem Inf Model. 2010 Nov 22;50(11):2041–52. doi: https://doi.org/10.1021/ci100241y
Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M. Combining Global and Local Measures for Structure-Based Druggability Predictions. J Chem Inf Model. 2012 Feb 27;52(2):360–72. doi: https://doi.org/10.1021/ci200454v
Terefe EM, Ghosh A. Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Phytochemicals Isolated From Croton dichogamus Against the HIV-1 Reverse Transcriptase. Bioinform Biol Insights. 2022 Jan;16:11779322221125604. doi: https://doi.org/10.1177/11779322221125605
Dallakyan S, Olson AJ. Small-Molecule Library Screening by Docking with PyRx. In: Hempel JE, Williams CH, Hong CC, editors. Chemical Biology [Internet]. New York, NY: Springer New York; 2015 [cited 2022 Aug 5]. p. 243–50. (Methods in Molecular Biology; vol. 1263). doi: https://doi.org/10.1007/978-1-4939-2269-7_19
Sethiya NK, Ahmed NM, Shekh RM, Kumar V, Kumar Singh P, Kumar V. Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: an overview. J Integr Med. 2018 Sep;16(5):299–311. doi: https://doi.org/10.1016/j.joim.2018.07.002
Ashraf MA, Khatun A, Sharmin T, Mobin F, Tanu AR, Morshed T, et al. MPDB 1.0: a medicinal plant database of Bangladesh. Bioinformation. 2014 Jun 30;10(6):384. doi: https://doi.org/10.6026/97320630010384
Hussain N, Chanda R, Abir RA, Mou MA, Hasan MK, Ashraf MA. MPDB 2.0: a large scale and integrated medicinal plant database of Bangladesh. BMC Res Notes. 2021 Aug 6;14(1):301. doi: https://doi.org/10.1186/s13104-021-05721-6
Rajagopal M, Walker S. Envelope Structures of Gram-Positive Bacteria. Curr Top Microbiol Immunol. 2017;404:1-44. doi: https://doi.org/10.1007/82_2015_5021
Bos MP, Robert V, Tommassen J. Biogenesis of the Gram-Negative Bacterial Outer Membrane. Annual Review of Microbiology. 2007 Oct 1;61(Volume 61, 2007):191–214. doi: https://doi.org/10.1146/annurev.micro.61.080706.093245
Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli. Cell. 2005 Apr 22;121(2):235–45. doi: https://doi.org/10.1016/j.cell.2005.02.015
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013 Mar;27(3):221–34. doi: https://doi.org/10.1007/s10822-013-9644-8
Maurer M, Oostenbrink C. Water in protein hydration and ligand recognition. J Mol Recognit. 2019 Dec;32(12):e2810. doi: https://doi.org/10.1002/jmr.2810
Marr D, Hildreth E. Theory of edge detection. Proc R Soc Lond B Biol Sci. 1980 Feb 29;207(1167):187–217. doi: https://doi.org/10.1098/rspb.1980.0020
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 1997 Jan 15;23(1):3–25. doi: https://doi.org/10.1016/s0169-409x(00)00129-0
DOI: https://doi.org/10.18860/jip.v10i1.31740
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Journal of Islamic Pharmacy

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2023 Journal of Islamic Pharmacy





