Molecular Docking: Analysis of Mahogany Plant Compounds (Swietenia macrophylla King) against the ACE2 Enzyme of SARS-CoV-2

Lalu Sanik Wahyu Fadil Amrulloh, Ayudia Cipta Khairani

Abstract


Various treatment approaches have been attempted to tackle severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)  infection. One approach to develop new drugs is through the utilization of medicinal plants. Mahogany (Swietenia macrophylla King) is one of the plants that is thought to have potential as an inhibitor of SARS-CoV-2. This study aims to determine the anti-SARS-CoV-2 potential of compounds in mahogany plants that have good interactions and interaction patterns with angiotensin-converting enzime 2 (ACE2) receptors. A total of ten mahogany plant compounds were tested for drug-likeness based on Lipinski screening which will then be docked to the ACE2 molecular target, using the molecular docking method. The parameters observed were binding energy values and amino acid residues. The results of molecular docking showed that the compounds predicted to have the highest binding affinity and have similar interaction patterns with natural ligands to the ACE2 molecular target were secomahoganin and stigmasterol. The secomahoganin and stigmasterol compounds are predicted to have good interactions with the ACE2 receptor.


Keywords


ACE2, molecular docking, SARS-CoV-2, Swietenia macrophylla

Full Text:

PDF

References


Kemenkes R. Pedoman Pencegahan dan Pengendalian Coronavirus Disease (COVID-19). Kementerian Kesehatan Republik Indonesia; 2020.

Michele CA, Teresa M, Pasquale DL, Matteo C, Michele DP, Giovanni M, et al. Pharmacological Approach and Therapeutic Options for SARS-Cov-2 Infection. Fast update. World J Adv Res Rev. 2020;06(01):105–119 World. doi: https://doi.org/10.30574/wjarr.2020.6.1.0089

Our World in Data. Coronavirus Pandemic (COVID-19) [Internet]. Oxford: Global Change Data Lab; 2025 [cited 2025 May 30]. Available from: https://ourworldindata.org/coronavirus

Wang T, Bai S, Wang W, Chen Z, Chen J, Liang Z, et al. Diterpene ginkgolides exert an antidepressant effect through the NT3-trkA and ras-MAPK pathways. Drug Des Devel Ther. 2020;14:1279–94. doi: https://doi.org/10.2147/DDDT.S229145

Jomah S, Asdaq SMB, Al-Yamani MJ. Clinical Efficacy of Antivirals Against Novel Coronavirus (COVID-19): A review. J Infect Public Health [Internet]. 2020;13(9):1187–95. doi: https://doi.org/10.1016/j.jiph.2020.07.013

Principi N, Esposito S. Chloroquine or Hydroxychloroquine for Prophylaxis of COVID-19. Lancet Infect Dis [Internet]. 2020;20(10):1118. doi: http://dx.doi.org/10.1016/S1473-3099(20)30296-6

Yasin SA, Azzahra A, Ramadhan NE, Mylanda V. Studi Penambatan Molekuler dan Prediksi ADMET Senyawa Bioaktif Beberapa Jamu Indonesia terhadap SARS-CoV-2 Main Protease (Mpro). Berk Ilm Mhs Farm Indones. 2020;7(2):24–41. doi: http://dx.doi.org/10.48177/bimfi.v7i2.45

Ananto AD, G LUYM, A LSWF. Analysis of BKO Content (Antalgin and Dexamethasone) in Herbal Medicine Using Iodimetry Titration and HPLC Method. Elkawnie. 2020;6(1):57. doi: https://doi.org/10.22373/ekw.v6i1.5428

Shakya AK. Medicinal plants: Future Source of New Drugs. Int J Herb Med [Internet]. 2016;4(4):59–64. doi: http://dx.doi.org/10.13140/RG.2.1.1395.6085

Borah R, Biswas S. Tulsi (Ocimum sanctum), excellent source of phytochemicals. Int J Environ Agric Biotechnol. 2018 Jan 1;3:1732–8. doi: http://dx.doi.org/10.22161/ijeab/3.5.21

Septiana E. Prospek Senyawa Bahan Menghambat, Sebagai Antivirus Dalam SARS-CoV-2. BioTrends. 2020;11(1):30–8.

Mulu A, Gajaa M, Woldekidan HB, Wmariam JF. The Impact of Curcumin Derived Polyphenols on the Structure and Flexibility COVID-19 Main Protease Binding Pocket: A Molecular Dynamics Simulation Study. PeerJ. 2021;9(December 2019):1–16. doi: https://doi.org/10.7717/peerj.11590

Vardhan S, Sahoo SK. In Silico ADMET and Molecular Docking Study on Searching Potential Inhibitors from Limonoids and Triterpenoids for COVID-19. Comput Biol Med [Internet]. 2020;124(July):103936. doi: https://doi.org/10.1016/j.compbiomed.2020.103936

Amrulloh LSWF, Harmastuti N, Prasetiyo A, Herowati R. Analysis of Molecular Docking and Dynamics Simulation of Mahogany (Swietenia macrophylla King) Compounds Against the PLpro Enzyme. J Farm dan Ilmu Kefarmasian Indones. 2023;10(3):347–59. doi: https://doi.org/10.20473/jfiki.v10i32023.347-359

Jabeen F, Arshad M, Sajjad Ul Hasan M, Younas M, Akhtar M, Rehman A. Computational Modeling for Bionanocomposites. In: Bionanocomposites Green Synthesis and Applications. 2020. p. 367–420. doi: https://doi.org/10.1016/b978-0-12-816751-9.00015-5

Wang H, Fu T, Du Y, Gao W, Huang K, Liu Z, et al. Scientific Discovery in the Age of Artificial Intelligence. Nature [Internet]. 2023;620(7972):47–60. doi: https://doi.org/10.1038/s41586-023-06221-2

Kesuma D, Siswandono S, Purwanto B, Hardjono S. Uji in silico Aktivitas Sitotoksik dan Toksisitas Senyawa Turunan N (Benzoil)-N’- feniltiourea Sebagai Calon Obat Antikanker. JPSCR J Pharm Sci Clin Res. 2018;3(1). doi: https://doi.org/10.20961/jpscr.v3i1.16266

Tumilaar SG, Siampa JP, Tallei TE. Penambatan Molekuler Senyawa Bioaktif dari Ekstrak Etanol Daun Pangi (Pangium edule) Terhadap Reseptor Protease HIV-1. J Ilm Sains. 2021;21(1):6. doi: https://doi.org/10.35799/jis.21.1.2021.30282

Daina A, Michielin O, Zoete V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci Rep. 2017;7(October 2016):1–13. doi: https://doi.org/10.1038/srep42717

Ramachandran B, Kesavan S, Rajkumar T. Molecular Modeling and Docking of Small Molecule Inhibitors Against NEK2. Bioinformation. 2016;12(2):62–8. doi: https://doi.org/10.6026/97320630012062

Zubair MS, Maulana S, Mukaddas A. Penambatan Molekuler dan Simulasi Dinamika Molekuler Senyawa Dari Genus Nigella Terhadap Penghambatan Aktivitas Enzim Protease HIV-1. J Farm Galen (Galenika J Pharmacy). 2020;6(1):132–40. doi: https://doi.org/10.22487/j24428744.2020.v6.i1.14982

Mukherjee S, Balius TE, Rizzo RC. Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. J Chem Inf Model. 2010;50(11):1986–2000. doi: https://doi.org/10.1021/ci1001982

Sándor M, Kiss R, Keseru GM. Virtual Fragment Docking by Glide: A Validation Study on 190 Protein-fragment Complexes. J Chem Inf Model. 2010;50(6):1165–72. doi: https://doi.org/10.1021/ci1000407

Najib A, Razak R, Mujtahid IF. Studi Penambatan Molekuler Senyawa Tectoquinone Terhadap Enzim α-Glukosidase. J Fitofarmaka Indones. 2023;10(2):63–74. doi: http://dx.doi.org/10.33096/jffi.v10i2.1059

de Oliveira TA, Medaglia LR, Maia EHB, Assis LC, de Carvalho PB, da Silva AM, et al. Evaluation of Docking Machine Learning and Molecular Dynamics Methodologies for DNA-Ligand Systems. Pharmaceuticals. 2022;15(2):1–15. doi: https://doi.org/10.3390/ph15020132

Venkatesh. Molecular Docking of Ganomestenol with SARS-COV-2 M PRO. Asian J Pharm Clin Res. 2022;15(2):46–7. doi: https://doi.org/10.22159/ajpcr.2022.v15i2.43679

Dar AM, Mir S. Molecular Docking: Approaches, Types, Applications and Basic Challenges. J Anal Bioanal Tech. 2017;08(02):8–10. doi: http://dx.doi.org/10.4172/2155-9872.1000356

Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key Topics in Molecular Docking for Drug Design. Int J Mol Sci. 2019;20(18):1–29. doi: https://doi.org/10.3390/ijms20184574

Kurczab R. The Evaluation of QM/MM-driven Molecular Docking Combined with MM/GBSA Calculations as a Halogen-bond Scoring Strategy. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2017;73(2):188–94. doi: https://doi.org/10.1107/s205252061700138x

Megawati DS, Ekowati J, Siswandono S. Quantitative Structure-Activity Relationship (QSAR) of N-Benzoyl-N’-Naphtylthiourea Derivative Compounds by in Silico as Anticancer Through Inhibition of VEGFR2 Receptors [Internet]. Vol. 3. Atlantis Press International BV; 2023. 137–148 p. doi: http://dx.doi.org/10.2991/978-94-6463-148-7_15

Wu Q, Huang SY. HCovDock: an efficient docking method for modeling covalent protein-ligand interactions [Internet]. Vol. 24, Briefings in Bioinformatics. 2023 [cited 2023 Jan 19]. doi: https://doi.org/10.1093/bib/bbac559

Towler P, Al. E. ACE2 X-Ray Structures Reveal a Large Hinge bending Motion Important for Inhibitor Binding and Catalysis. J Biol Chem [Internet]. 2004;279(17):17996–18007. doi: https://doi.org/10.1074/jbc.M311191200

Salem IM, Mostafa SM, Salama I, El-Sabbagh OI, Hegazy WAH, Ibrahim TS. Design, Synthesis and Antitumor Evaluation of Novel Pyrazolo[3,4-d]pyrimidines Incorporating Different Amino Acid Conjugates as Potential DHFR Inhibitors. J Enzyme Inhib Med Chem [Internet]. 2023;38(1):203–15. doi: https://doi.org/10.1080/14756366.2022.2142786




DOI: https://doi.org/10.18860/jip.v10i1.32426

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Journal of Islamic Pharmacy

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

© 2023 Journal of Islamic Pharmacy