Patch based Classification using ResNet for Land Cover changes detection of Batu City

Hisyam Fahmi

Abstract


The purpose of this study is to analyze the variations in land cover in Batu City, East Java Province, Indonesia, utilizing a patch-based classification strategy and deep learning. This study provides a preliminary estimation of land cover change in Batu City. The research also highlights the possibility of using deep learning techniques to analyze land use and land cover (LULC) variations in other urban areas with greater precision and efficiency. The EuroSAT dataset is used to train a classification model for patch labeling using the ResNet-50 architecture. Comparing the land cover of Batu City in 2001 and 2022 allows us to detect LULC changes, with almost 50% of the patch changing. The results indicate that ‘Housing’ and ‘Road’ become the most changed categories, while the vegetation areas decrease in number. The results demonstrate that the ResNet-50 architecture is capable of classifying patches and detecting LULC changes with an accuracy of 88% and an execution time of approximately 126.53 seconds.

Full Text:

PDF

References


R. Hartono and Nasikh, “Applying Remote Sensing Technology and Geographic Information System in Batu, East Java,” Indones. J. Geogr., vol. 49, no. 2, pp. 118–124, Dec. 2017, doi: 10.22146/IJG.12842.

A. Witjaksono, Surjono, A. Suharyanto, and M. Bisri, “Spatial Analysis of Land Use in Bumiaji Subdistrict, Batu City, East Java, Indonesia,” GEOMATE J., vol. 15, no. 47, pp. 139–144, 2018, doi: 10.21660/2018.47.47589.

I. Indarto and F. L. Hakim, “Tracking the Land Use Land Cover Changes from 2000 to 2018 in Local Area of East Java Province,” Bull. Geogr. Socio-economic Ser., vol. 52, no. 52, pp. 7–24, Jan. 2021, doi: 10.2478/bog-2021-0010.

W. Qi, L. Feng, H. Yang, G. Shalahuddin Kholiq, and H. Hidayat, “LiDAR DTM Application for Flood Inundation Modeling and Visualization (Case Study: Batu City, East Java),” IOP Conf. Ser. Earth Environ. Sci., vol. 1127, no. 1, p. 012011, Jan. 2022, doi: 10.1088/1755-1315/1127/1/012011.

A. R. Wati, I. Indarto, and B. T. Wijaya Putra, “Using Sentinel image to study land cover change from 2015 to 2019 in Probolinggo and Pasuruan regencies,” AIP Conf. Proc., vol. 2583, no. 1, p. 060003, Jan. 2022, doi: 10.1063/5.0117114.

A. U. Albab, A. S. Leksono, and B. Yanuwiadi, “Land Use Analysis with Odonata Diversity and Composition using the ArcGIS in Malang and Batu, East Java,” Indones. J. Environ. Sustain. Dev., vol. 10, no. 2, pp. 2087–3522, Jul. 2019, doi: 10.21776/UB.JPAL.2019.010.02.01.

S. M. Beselly, R. D. Lufira, and U. Andawayanti, “Seasonal Spatio-temporal Land Cover Dynamics in the Upper Brantas Watershed,” IOP Conf. Ser. Earth Environ. Sci., vol. 930, no. 1, p. 012021, Dec. 2021, doi: 10.1088/1755-1315/930/1/012021.

H. Fahmi and A. Abtokhi, “Penanaman Pohon pada Daerah Aliran Sungai di Desa Torongrejo Kota Batu dalam Mendukung Program Brantas Tuntas,” JRCE (Journal Res. Community Engag., vol. 2, no. 1, pp. 01–06, Sep. 2020, doi: 10.18860/JRCE.V2I1.9708.

M. Wang, H. Zhang, W. Sun, S. Li, F. Wang, and G. Yang, “A Coarse-to-Fine Deep Learning Based Land Use Change Detection Method for High-Resolution Remote Sensing Images,” Remote Sens. 2020, Vol. 12, Page 1933, vol. 12, no. 12, p. 1933, Jun. 2020, doi: 10.3390/RS12121933.

H. Fahmi and W. P. Sari, “Analysis of deep learning architecture for patch-based land cover classification,” in International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Dec. 2022, pp. 1–5. doi: 10.1109/ICITISEE57756.2022.10057895.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-December, pp. 770–778, Dec. 2015, doi: 10.48550/arxiv.1512.03385.

A. Rastogi, “ResNet50. ResNet-50 is a convolutional neural… | by Aditi Rastogi | Dev Genius,” Mar. 14, 2022. https://blog.devgenius.io/resnet50-6b42934db431 (accessed Apr. 11, 2023).

P. S. Rathore, N. Dadich, A. Jha, and D. Pradhan, “Effect of Learning Rate on Neural Network and Convolutional Neural Network,” Int. J. Eng. Res. Technol., Jul. 2018, doi: 10.17577/IJERTCONV6IS17007.

I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315, Dec. 2020, doi: 10.1016/J.ICTE.2020.04.010.

S. Afaq and S. Rao, “Significance Of Epochs On Training A Neural Network,” Int. J. Sci. Technol. Res., vol. 9, no. 6, pp. 485–488, 2020, Accessed: Sep. 18, 2022. [Online]. Available: www.ijstr.org

D. P. Kingma and J. Lei Ba, “ADAM: A Method for stochastic optimization,” 2015.

P. Helber, B. Bischke, A. Dengel, and D. Borth, “EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 7, pp. 2217–2226, Aug. 2017, doi: 10.48550/arxiv.1709.00029.




DOI: https://doi.org/10.18860/mat.v14i2.20946

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Hisyam Fahmi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The journal is indexed by :

Dimensions Sinta CrossRef GoogleScholar
Index Copernicus Moraref Portal Garuda

 

_______________________________________________________________________________________________________________

Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________

Creative Commons License
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN :  2477-2550