Comparative Analysis of Kidney Disease Detection Using Machine Learning
Abstract
Keywords
Full Text:
PDFReferences
S. Bouya, A. Balouchi, H. Rafiemanesh, and M. Hesaraki, “Prevalence of Chronic Kidney Disease in Iranian General Population: A Meta-Analysis and Systematic Review,” Therapeutic Apheresis and Dialysis, vol. 22, no. 6, pp. 594–599, Jul. 2018, doi: 10.1111/1744-9987.12716.
K.-U. Eckardt et al., “Evolving importance of kidney disease: from subspecialty to global health burden,” The Lancet, vol. 382, no. 9887, pp. 158–169, Jul. 2013, doi: 10.1016/s0140-6736(13)60439-0.
J. Coresh et al., “Prevalence of Chronic Kidney Disease in the United States,” JAMA, vol. 298, no. 17, p. 2038, Nov. 2007, doi: 10.1001/jama.298.17.2038.
S. S, R. K. A, and L. K, “A Comprehensive Analysis of Machine Learning Algorithms in Diagnosis of Chronic Kidney Disease,” in 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Oct. 2022. doi: 10.1109/icccnt54827.2022.9984275.
J. Qin, L. Chen, Y. Liu, C. Liu, C. Feng, and B. Chen, “A Machine Learning Methodology for Diagnosing Chronic Kidney Disease,” IEEE Access, vol. 8, pp. 20991–21002, 2020, doi: 10.1109/access.2019.2963053.
B. Wang, “Kidney Disease Diagnosis Based on Machine Learning,” in 2020 International Conference on Computing and Data Science (CDS), Aug. 2020. doi: 10.1109/cds49703.2020.00066.
S. K. David, M. Rafiullah, and K. Siddiqui, “Comparison of Different Machine Learning Techniques to Predict Diabetic Kidney Disease,” Journal of Healthcare Engineering, vol. 2022, pp. 1–9, Apr. 2022, doi: 10.1155/2022/7378307.
Md. Tanjeel Islam Khan, Md. Sazzadul Islam Prottasha, Tasneem Alam Nasim, Abdullah Al Mehedi, Md. Appel Mahmud Pranto, and Nafiz Al Asad, “Performance Analysis of Various Machine Learning Classifiers on Reduced Chronic Kidney Disease Dataset.”
N. H. Chowdhury et al., “Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients,” Diagnostics, vol. 11, no. 12, p. 2267, Dec. 2021, doi: 10.3390/diagnostics11122267.
M. S. Roy, R. Ghosh, D. Goswami, and R. Karthik, “Comparative Analysis of Machine Learning Methods to Detect Chronic Kidney Disease,” Journal of Physics: Conference Series, vol. 1911, no. 1, p. 012005, May 2021, doi: 10.1088/1742-6596/1911/1/012005.
E. Alshdaifat, D. Alshdaifat, A. Alsarhan, F. Hussein, and S. M. F. S. El-Salhi, “The Effect of Preprocessing Techniques, Applied to Numeric Features, on Classification Algorithms’ Performance,” Data, vol. 6, no. 2, p. 11, Jan. 2021, doi: 10.3390/data6020011.
J. Chandrasekaran, H. Feng, Y. Lei, R. Kacker, and D. R. Kuhn, “Effectiveness of dataset reduction in testing machine learning algorithms,” in 2020 IEEE International Conference On Artificial Intelligence Testing (AITest), Aug. 2020. doi: 10.1109/aitest49225.2020.00027.
J. Huang, Y.-F. Li, and M. Xie, “An empirical analysis of data preprocessing for machine learning-based software cost estimation,” Information and Software Technology, vol. 67, pp. 108–127, Nov. 2015, doi: 10.1016/j.infsof.2015.07.004.
M. Ganz, Sune Holm, and A. Feragen, “Assessing Bias in Medical AI.”
M. A. Gianfrancesco, S. Tamang, J. Yazdany, and G. Schmajuk, “Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data,” JAMA Internal Medicine, vol. 178, no. 11, p. 1544, Nov. 2018, doi: 10.1001/jamainternmed.2018.3763.
C. Bradshaw et al., “Early detection of chronic kidney disease in low-income and middle-income countries: development and validation of a point-of-care screening strategy for India,” BMJ Global Health, vol. 4, no. 5, p. e001644, Sep. 2019, doi: 10.1136/bmjgh-2019-001644.
T. Kothari, K. Jensen, D. Mallon, G. Brogan, and J. Crawford, “Impact of Daily Electronic Laboratory Alerting on Early Detection and Clinical Documentation of Acute Kidney Injury in Hospital Settings,” Academic Pathology, vol. 5, p. 2374289518816502, Jan. 2018, doi: 10.1177/2374289518816502.
S. de Lusignan et al., “Identifying patients with chronic kidney disease from general practice computer records,” Family Practice, vol. 22, no. 3, pp. 234–241, Apr. 2005, doi: 10.1093/fampra/cmi026.
M. K. T. Chatzimanouil, L. Wilkens, and H.-J. Anders, “Quantity and Reporting Quality of Kidney Research,” Journal of the American Society of Nephrology, vol. 30, no. 1, pp. 13–22, Dec. 2018, doi: 10.1681/asn.2018050515.
C. R. Parikh and H. Thiessen-Philbrook, “Key Concepts and Limitations of Statistical Methods for Evaluating Biomarkers of Kidney Disease,” Journal of the American Society of Nephrology, vol. 25, no. 8, pp. 1621–1629, Aug. 2014, doi: 10.1681/asn.2013121300.
G. S. Collins, O. Omar, M. Shanyinde, and L.-M. Yu, “A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods,” Journal of Clinical Epidemiology, vol. 66, no. 3, pp. 268–277, Mar. 2013, doi: 10.1016/j.jclinepi.2012.06.020.
P. F. Whiting, A. W. S. Rutjes, M. E. Westwood, and S. Mallett, “A systematic review classifies sources of bias and variation in diagnostic test accuracy studies,” Journal of Clinical Epidemiology, vol. 66, no. 10, pp. 1093–1104, Oct. 2013, doi: 10.1016/j.jclinepi.2013.05.014.
M. J. Willemink et al., “Preparing Medical Imaging Data for Machine Learning,” Radiology, vol. 295, no. 1, pp. 4–15, Apr. 2020, doi: 10.1148/radiol.2020192224.
R. C. Poonia et al., “Intelligent Diagnostic Prediction and Classification Models for Detection of Kidney Disease,” Healthcare, vol. 10, no. 2, p. 371, Feb. 2022, doi: 10.3390/healthcare10020371.
Ms. K. Sri Vijaya, P. N. S. Sowmya, S. Dimpu Aman, V. Pavan Kumar, and M. Keerthi, “Kidney Disease Prediction using Machine Learning,” International Journal of Advanced Research in Science, Communication and Technology, pp. 149–153, Nov. 2022, doi: 10.48175/ijarsct-7614.
B. Singh, K. Arora, and S. S. Iyer, “Chronic Kidney Disease Detection Using Machine Learning Regression Models,” ECS Transactions, vol. 107, no. 1, pp. 2191–2207, Apr. 2022, doi: 10.1149/10701.2191ecst.
D. Gomez and J. Montero, “Determining the accuracy in image supervised classification problems,” in Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011), France, 2011. doi: 10.2991/eusflat.2011.103.
S. J. MacEachern and N. D. Forkert, “Machine learning for precision medicine,” Genome, vol. 64, no. 4, pp. 416–425, Apr. 2021, doi: 10.1139/gen-2020-0131.
A. Botchkarev, “A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms,” IJIKM, vol. 14, pp. 045–076, 2019, doi: 10.28945/4184.
DOI: https://doi.org/10.18860/mat.v15i2.21468
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 MOHAMMAD DIQI, I WAYAN ORDIYASA, MARSELINA ENDAH HISWATI
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal is indexed by :
_______________________________________________________________________________________________________________
Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN : 2477-2550