IoT and Machine Learning in Smart Kitchen Monitoring for Enhanced Worker Health

M. ALDIKI FEBRIANTONO

Abstract


The significance of occupational health in culinary settings, particularly kitchens, is paramount due to the inherent health risks associated with these environments. This study addresses the necessity of maintaining optimal environmental conditions, such as temperature, humidity, and air quality, in kitchens to safeguard worker health. To achieve this, the study advocates for the implementation of sophisticated ventilation and air conditioning systems. The core focus of the research is the integration of Internet of Things (IoT) technology and advanced machine learning algorithms for the real-time monitoring and assessment of kitchen environments. Specifically, the study fine-tunes and evaluates several classification algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN), aiming to accurately predict and manage kitchen conditions. The comparative analysis reveals that the DT algorithm outperforms others, demonstrating exceptional accuracy (97.41%), precision (95.35%), and proficiency in identifying relevant scenarios (88.57%). In contrast, the KNN algorithm registers the lowest accuracy (75.12%), while the SVM algorithm, despite being the least precise (86.55%), shows a relatively higher capability in recognizing pertinent cases (86.55%) compared to KNN (72.33%). This study underscores the potential of integrating IoT and machine learning in enhancing occupational health standards in kitchen settings.


Full Text:

PDF

References


[1] N. Umeokafor, K. Evangelinos, and A. Windapo, “Strategies for improving complex construction health and safety regulatory environments,” Int. J. Constr. Manag., vol. 22, no. 7, pp. 1333–1344, 2022, doi: 10.1080/15623599.2019.1707853.

[2] C. Carlsten, S. Salvi, G. W. K. Wong, and K. F. Chung, “Personal strategies to minimise effects of air pollution on respiratory health: advice for providers, patients and the public,” Eur. Respir. J., vol. 55, no. 6, Jun. 2020, doi: 10.1183/13993003.02056-2019.

[3] G. Guarnieri, B. Olivieri, G. Senna, and A. Vianello, “Relative Humidity and Its Impact on the Immune System and Infections,” Int. J. Mol. Sci. 2023, Vol. 24, Page 9456, vol. 24, no. 11, p. 9456, May 2023, doi: 10.3390/IJMS24119456.

[4] D. Singh, M. Dahiya, R. Kumar, and C. Nanda, “Sensors and systems for air quality assessment monitoring and management: A review,” J. Environ. Manage., vol. 289, p. 112510, Jul. 2021, doi: 10.1016/J.JENVMAN.2021.112510.

[5] S. Liu et al., “Improving indoor air quality and thermal comfort in residential kitchens with a new ventilation system,” Build. Environ., vol. 180, p. 107016, Aug. 2020, doi: 10.1016/J.BUILDENV.2020.107016.

[6] R. C. Chen, C. Dewi, S. W. Huang, and R. E. Caraka, “Selecting critical features for data classification based on machine learning methods,” J. Big Data, vol. 7, no. 1, pp. 1–26, Dec. 2020, doi: 10.1186/S40537-020-00327-4/FIGURES/13.

[7] S. Rajeswari and K. Suthendran, “C5.0: Advanced Decision Tree (ADT) classification model for agricultural data analysis on cloud,” Comput. Electron. Agric., vol. 156, pp. 530–539, Jan. 2019, doi: 10.1016/J.COMPAG.2018.12.013.

[8] U. Ahmed, R. Mumtaz, H. Anwar, A. A. Shah, R. Irfan, and J. García-Nieto, “Efficient Water Quality Prediction Using Supervised Machine Learning,” Water 2019, Vol. 11, Page 2210, vol. 11, no. 11, p. 2210, Oct. 2019, doi: 10.3390/W11112210.

[9] H. Sattar et al., “An IoT-Based Intelligent Wound Monitoring System,” IEEE Access, vol. 7, pp. 144500–144515, 2019, doi: 10.1109/ACCESS.2019.2940622.

[10] C. Buizza et al., “Data Learning: Integrating Data Assimilation and Machine Learning,” J. Comput. Sci., vol. 58, p. 101525, Feb. 2022, doi: 10.1016/J.JOCS.2021.101525.

[11] I. S. Al-Mejibli, J. K. Alwan, and D. H. Abd, “The effect of gamma value on support vector machine performance with different kernels,” Int. J. Electr. Comput. Eng., vol. 10, no. 5, pp. 5497–5506, Oct. 2020, doi: 10.11591/IJECE.V10I5.PP5497-5506.

[12] Z. Yang et al., “Improving The Performance of K-Nearest Neighbor Algorithm by Reducing The Attributes of Dataset Using Gain Ratio,” J. Phys. Conf. Ser., vol. 1566, no. 1, p. 012090, Jun. 2020, doi: 10.1088/1742-6596/1566/1/012090.

[13] B. Taha Jijo and A. Mohsin Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, Mar. 2021, doi: 10.38094/jastt20165.

[14] S. Kaparthi and D. Bumblauskas, “Designing predictive maintenance systems using decision tree-based machine learning techniques,” Int. J. Qual. Reliab. Manag., vol. 37, no. 4, pp. 659–686, Mar. 2020, doi: 10.1108/IJQRM-04-2019-0131/FULL/XML.

[15] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189–215, Sep. 2020, doi: 10.1016/J.NEUCOM.2019.10.118.

[16] S. Mohsen, A. Elkaseer, and S. G. Scholz, “Human Activity Recognition Using K-Nearest Neighbor Machine Learning Algorithm,” Smart Innov. Syst. Technol., vol. 262 SIST, pp. 304–313, 2022, doi: 10.1007/978-981-16-6128-0_29/COVER.

[17] Z. Pan, Y. Wang, and Y. Pan, “A new locally adaptive k-nearest neighbor algorithm based on discrimination class,” Knowledge-Based Syst., vol. 204, p. 106185, Sep. 2020, doi: 10.1016/J.KNOSYS.2020.106185.

[18] K. E. Paleologos, M. Y. E. Selim, and A. M. O. Mohamed, “Indoor air quality: pollutants, health effects, and regulations,” Pollut. Assess. Sustain. Pract. Appl. Sci. Eng., pp. 405–489, Jan. 2021, doi: 10.1016/B978-0-12-809582-9.00008-6.

[19] J. Saini, M. Dutta, and G. Marques, “Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review,” Int. J. Environ. Res. Public Heal. 2020, Vol. 17, Page 4942, vol. 17, no. 14, p. 4942, Jul. 2020, doi: 10.3390/IJERPH17144942.

[20] J. González-Martín, N. J. R. Kraakman, C. Pérez, R. Lebrero, and R. Muñoz, “A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control,” Chemosphere, vol. 262, p. 128376, Jan. 2021, doi: 10.1016/J.CHEMOSPHERE.2020.128376.

[21] S. Vardoulakis et al., “Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review,” Int. J. Environ. Res. Public Heal. 2020, Vol. 17, Page 8972, vol. 17, no. 23, p. 8972, Dec. 2020, doi: 10.3390/IJERPH17238972.

[22] A. P. Selvam, S. Najah, and S. Al-Humairi, “The Impact of IoT and Sensor Integration on Real-Time Weather Monitoring Systems: A Systematic Review,” Nov. 2023, doi: 10.21203/RS.3.RS-3579172/V1.

[23] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. Transitions Proc., vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/J.GLTP.2022.04.020.

[24] M. Aldiki Febriantono, S. Hadi Pramono, G. Naghdy, and R. Scholar, “Classification of multiclass imbalanced data using cost-sensitive decision tree C5.0,” IAES Int. J. Artif. Intell. (IJ-AI, vol. 9, no. 1, pp. 65–72, 2020, doi: 10.11591/ijai.v9.i1.pp65-72.




DOI: https://doi.org/10.18860/mat.v16i1.25747

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 M. ALDIKI FEBRIANTONO

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The journal is indexed by :

Dimensions Sinta CrossRef GoogleScholar
Index Copernicus Moraref Portal Garuda

 

_______________________________________________________________________________________________________________

Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________

Creative Commons License
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN :  2477-2550