Gated Recurrent Unit (GRU) for Sentiment Classification on Imbalanced Data: The COVID-19 Vaccine Program in Twitter

Mukhlis Hadi, Surya Agustian

Abstract


Abstract— The initial implementation of the COVID-19 vaccination by the Indonesian government sparked mixed reactions from the public, ranging from strong support to fierce opposition. These differing opinions influenced individuals' decisions to either accept or refuse the vaccination program for themselves or their families. Public sentiment, expressed through posts, comments, or status updates, provides valuable insights into vaccine acceptance or rejection. This study conducts sentiment analysis using deep learning techniques, specifically employing the Gated Recurrent Unit (GRU) method on Twitter data. The dataset consists of three sentiment classes: positive, negative, and neutral. The Word2Vec word embedding model was used as input and trained on a COVID-19 vaccination sentiment dataset collected from Twitter. Since the classes in the existing data tweets are imbalanced, some other steps are required to improve the classification. The best-performing model achieved an F1-score of 66% and an accuracy of 69%. This classification model effectively addresses the class imbalance problem, delivering competitive results compared to other methods.


Keywords


teknik informatika; komputer; teknik komputer, sentimen, klasifikasi, analisis sentimen, GRU, LSTM, RNN, machine learning, deep learning

Full Text:

PDF

References


A. Syauqi, “Jalan panjang covid19 (sebuah refleksi dikala wabah merajalela berdampak pada perekonomian),” Jurnal Keuangan dan Perbankan Syariah., vol. 1, no. 1, pp. 1–19, 2020.

J. Adhani, I. N. Yulita, A. Sholahuddin, M. N. Ardisasmita, and D. Agustian, “COVID-19 Social Safety Nets Sentiment Analysis On Twitter Using Gated Recurrent Unit (GRU) Method,” in 2021 International Conference on Artificial Intelligence and Big Data Analytics, Oct. 2021, pp. 100–103. doi: 10.1109/ICAIBDA53487.2021.9689737.

F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Indonesian Health and Management Journal vol 8 (2), 2020.

C. Villavicencio, J. J. Macrohon, X. A. Inbaraj, J. H. Jeng, and J. G. Hsieh, “Twitter sentiment analysis towards covid-19 vaccines in the Philippines using naïve bayes,” Information, vol. 12, no. 5, 2021, doi: 10.3390/info12050204.

V. N. T. Le, S. Ahderom, and K. Alameh, “Performances of the lbp based algorithm over cnn models for detecting crops and weeds with similar morphologies,” Sensors (Switzerland), vol. 20, no. 8, pp. 1–18, 2020, doi: 10.3390/s20082193.

A. L. Fairuz, R. D. Ramadhani, and N. A. F. Tanjung, “Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter,” J. Dinda Data Science, Information Technology and Data Analysis, vol. 1, no. 1, pp. 42–51, 2021, doi: 10.20895/dinda.v1i1.180.

J. Patihullah and E. Winarko, “Hate Speech Detection for Indonesia Tweets Using Word Embedding And Gated Recurrent Unit,” IJCCS (Indonesian Journal of Computer Cybernetics System, vol. 13, no. 1, p. 43, Jan. 2019, doi: 10.22146/ijccs.40125.

M. Ihsan, B. S. Negara, and S. Agustian, “LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter,” Digital Zone: J. Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 79–89, 2022, doi: 10.31849/digitalzone.v13i1.9950.

Ash Shiddicky and S. Agustian, “Analisis Sentimen Masyarakat Terhadap Kebijakan Vaksinasi Covid-19 pada Media Sosial Twitter menggunakan Metode Logistic Regression,” J. CoSciTech (Computer Science and Information Technology), vol. 3, no. 2, pp. 99–106, 2022, doi: 10.37859/coscitech.v3i2.3836.

M. Sahbuddin and S. Agustian, “Support Vector Machine Method with Word2vec for Covid-19 Vaccine Sentiment Classification on Twitter,” J. Informatics Telecommunication and Engineering., vol. 6, no. 1, pp. 288–297, 2022, doi: 10.31289/jite.v6i1.7534.

A. Naldi and S. Agustian, “Klasifikasi Sentimen Vaksin Covid-19 Menggunakan K-Nearest Neighbor Berdasarkan Word Embeddings Fasttext pada Twitter,” Zonasi: J. Sistem. Informasi, vol. 5, pp. 323–333, Jun. 2023, doi: 10.31849/zn.v5i2.12548.

H. H. Sinaga and S. Agustian, “Pebandingan Metode Decision Tree dan XGBoost untuk Klasifikasi Sentimen Vaksin Covid-19 di Twitter,” J. Nasional. Teknololgi dan Sistem Informasi, vol. 8, no. 3, pp. 107–114, 2022, doi: 10.25077/teknosi.v8i3.2022.107-114.

Roihan, “Metode Decision Tree Dengan Fitur Fasttext Untuk Klasifikasi Sentimen Vaksin Covid-19 Pada Twitter,” Universitas Islam Negeri Sultan Syarif Kasim Riau, 2023. [Online]. Available: http://repository.uin-suska.ac.id/74348/

Ardi Mursyidi, “Penerapan Bidirectional Encoder Representations From Transformers (BERT) untuk Analisis Sentimen Vaksin Covid-19 pada Twitter,” Universitas Islam Negeri Sultan Syarif Kasim Riau, 2023. [Online]. Available: http://repository.uin-suska.ac.id/74313/

M. Rizki, “Analisis Sentimen Masyarakat Terhadap Vaksin Covid-19 Menggunakan Metode Support Vector Machine Pada Media Sosial Twitter,” Universitas Islam Negeri Sultan Syarif Kasim Riau. [Online]. Available: http://repository.uin-suska.ac.id/id/eprint/58497

P. Yohana, S. Agustian, and S. Kurnia Gusti, “Klasifikasi Sentimen Masyarakat terhadap Kebijakan Vaksin Covid-19 pada Twitter dengan Imbalance Classes Menggunakan Naive Bayes,” in SNTIKI (Seminar Nasional Teknologi Informasi, Komunikasi dan Industri), 2022.

M. M. Kusairi and S. Agustian, “SVM Method with FastText Representation Feature for Classification of Twitter Sentiments Regarding the Covid-19 Vaccination Program", Digital Zone: J. Teknologi Informasi dan Komunikasi, vol. 13 (1) 2022, pp. 140–150.

R. Wardoyo, A. Musdholifah, G. Pradipta, and H. Sanjaya, "Weighted Majority Voting by Statistical Performance Analysis on Ensemble Multiclassifier". in Fifth International Conference on Informatics and Computing (ICIC) 2020. doi: 10.1109/ICIC50835.2020.9288552.

C. J. E. Munthe, N. A. Hasibuan, and H. Hutabarat, “Penerapan Algoritma Text Mining Dan TF-RF Dalam Menentukan Promo Produk Pada Marketplace,” Rekayasa Teknik Informatika dan Informasi, vol. 2, no. 3, pp. 110–115, 2022, [Online]. Available: https://djournals.com/resolusi

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, (2014), “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation”, ArXiv: 1406.1078, doi: 10.48550/arXiv.1406.1078




DOI: https://doi.org/10.18860/mat.v17i1.27995

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Mukhlis Hadi, Surya Agustian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The journal is indexed by :

Dimensions Sinta CrossRef GoogleScholar
Index Copernicus Moraref Portal Garuda

 

_______________________________________________________________________________________________________________

Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________

Creative Commons License
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN :  2477-2550