Sentiment Analysis of Perpustakaan Nasional Republik Indonesia Through Social Media Twitter

Fakhris Khusnu Reza Mahfud, Nita Siti Mudawamah, Wahyu Hariyanto

Abstract


The library is a gate of science and a heart of civilization. Indonesia already has a Perpustakaan Nasional consisted of 27 floors and is equipped with facilities that are adequate for user needs. Apart from that, we need to see opinions from the community as users. Public opinion about the library is critical for library managers to evaluate services and facilities from the library. One way to find out the views of the community is by using social media twitter. Twitter social media is often used in channelling opinions or expressing opinions about specific topics; besides social media, twitter is commonly used for digital campaign movements. Submission of views and even digital campaigns on Twitter social media greatly influence the opinions and even behaviour of society in various ways. This study analyzes tweets about national libraries by classifying, positive opinions, negative opinions and neutral opinions. In this study, twitter data will go through the preprocessing, weighting, and classification stages. TF-IDF and TF binary are used in weighting in this study. The classification used in this study is Naive Bayes and KNN. Accuracy, precision, and recall values were also used in this study to evaluate classification performance. The highest classification performance using KNN classification with TF-IDF weighting resulted in the value of accuracy, precision, and recall of 83.33%, 79.2%, and 83.3% respectively.

Keywords


sentiment analysis, perpustakaan nasional, twitter, classification

Full Text:

PDF

References


S. Agmasari, “Melihat Fasilitas di Perpustakaan Nasional RI,” 07-Jan-2018.

Y. Choi, “Finding ‘just right’ books for children: analyzing sentiments in online book reviews,” Electron. Libr., Jun. 2019.

H. Murfi, F. L. Siagian, and Y. Satria, “Topic features for machine learning-based sentiment analysis in Indonesian tweets,” Int. J. Intell. Comput. Cybern., vol. 12, no. 1, pp. 70–81, Feb. 2019.

N. Claypo and S. Jaiyen, “Opinion mining for Thai restaurant reviews using neural networks and mRMR feature selection,” in 2014 International Computer Science and Engineering Conference (ICSEC), 2014, pp. 394–397.

A. D. Putri, “Klasifikasi Dokumen Teks Menggunakan Metode Support Vector Machine dengan Pemilihan Fitur Chi-Square,” 2013.

N. Y. Faradhillah, R. P. Kusumawardani, and I. Hafidz, “Eksperimen Sistem Klasifikasi Analisa Sentimen Twitter pada Akun Resmi Pemerintah Kota Surabaya Berbasis Pembelajaran Mesin,” SESINDO 2016, vol. 2016, 2016.

A. A. Arifiyanti, “EKSTRAKSI FITUR PADA KONTEN JEJARING SOSIAL TWITTER BERBAHASA INDONESIA DALAM PENINGKATAN KINERJA KLASIFIKASI,” 2015.

A. Hamzah, “Klasifikasi teks dengan naïve bayes classifier (nbc) untuk pengelompokan teks berita dan abstract akademis,” in Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III, 2012, pp. 269–277.

P. Nomleni, M. Hariadi, and I. K. E. Purnama, “Sentiment Analysis Berbasis Big Data Sentiment Analysis Based Big Data,” ReTII, 2014.

C. Megawati, “Analisis Aspirasi dan Pengaduan di Situs LAPOR! Dengan Menggunakan Text Mining,” Depok Univ. Indones., 2015.

F. K. R. Mahfud and A. Tjahyanto, “Improving classification performance of public complaints with TF-IGM weighting: Case study: Media center E-wadul surabaya,” in 2017 International Conference on Sustainable Information Engineering and Technology (SIET), 2017, pp. 220–225.

F. P. Shah and V. Patel, “A review on feature selection and feature extraction for text classification,” in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016, pp. 2264–2268.

A. D. Arifin, I. Arieshanti, and A. Z. Arifin, “Implementasi algoritma k-nearest neighbor yang berdasarkan one pass clustering untuk kategorisasi teks,” ITS Surabaya, 2012.

S. K. Lidya, O. S. Sitompul, and S. Efendi, “Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine (SVM) Dan K-Nearest Neighbor (K-NN),” in Seminar Nasional Teknologi Informasi dan Komunikasi, 2015.




DOI: https://doi.org/10.18860/mat.v12i1.8973

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Fakhris Khusnu Reza Mahfud

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The journal is indexed by :

Dimensions Sinta CrossRef GoogleScholar
Index Copernicus Moraref Portal Garuda

 

_______________________________________________________________________________________________________________

Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________

Creative Commons License
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN :  2477-2550