Sentiment Analysis of Perpustakaan Nasional Republik Indonesia Through Social Media Twitter
Abstract
Keywords
Full Text:
PDFReferences
S. Agmasari, “Melihat Fasilitas di Perpustakaan Nasional RI,” 07-Jan-2018.
Y. Choi, “Finding ‘just right’ books for children: analyzing sentiments in online book reviews,” Electron. Libr., Jun. 2019.
H. Murfi, F. L. Siagian, and Y. Satria, “Topic features for machine learning-based sentiment analysis in Indonesian tweets,” Int. J. Intell. Comput. Cybern., vol. 12, no. 1, pp. 70–81, Feb. 2019.
N. Claypo and S. Jaiyen, “Opinion mining for Thai restaurant reviews using neural networks and mRMR feature selection,” in 2014 International Computer Science and Engineering Conference (ICSEC), 2014, pp. 394–397.
A. D. Putri, “Klasifikasi Dokumen Teks Menggunakan Metode Support Vector Machine dengan Pemilihan Fitur Chi-Square,” 2013.
N. Y. Faradhillah, R. P. Kusumawardani, and I. Hafidz, “Eksperimen Sistem Klasifikasi Analisa Sentimen Twitter pada Akun Resmi Pemerintah Kota Surabaya Berbasis Pembelajaran Mesin,” SESINDO 2016, vol. 2016, 2016.
A. A. Arifiyanti, “EKSTRAKSI FITUR PADA KONTEN JEJARING SOSIAL TWITTER BERBAHASA INDONESIA DALAM PENINGKATAN KINERJA KLASIFIKASI,” 2015.
A. Hamzah, “Klasifikasi teks dengan naïve bayes classifier (nbc) untuk pengelompokan teks berita dan abstract akademis,” in Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III, 2012, pp. 269–277.
P. Nomleni, M. Hariadi, and I. K. E. Purnama, “Sentiment Analysis Berbasis Big Data Sentiment Analysis Based Big Data,” ReTII, 2014.
C. Megawati, “Analisis Aspirasi dan Pengaduan di Situs LAPOR! Dengan Menggunakan Text Mining,” Depok Univ. Indones., 2015.
F. K. R. Mahfud and A. Tjahyanto, “Improving classification performance of public complaints with TF-IGM weighting: Case study: Media center E-wadul surabaya,” in 2017 International Conference on Sustainable Information Engineering and Technology (SIET), 2017, pp. 220–225.
F. P. Shah and V. Patel, “A review on feature selection and feature extraction for text classification,” in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016, pp. 2264–2268.
A. D. Arifin, I. Arieshanti, and A. Z. Arifin, “Implementasi algoritma k-nearest neighbor yang berdasarkan one pass clustering untuk kategorisasi teks,” ITS Surabaya, 2012.
S. K. Lidya, O. S. Sitompul, and S. Efendi, “Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine (SVM) Dan K-Nearest Neighbor (K-NN),” in Seminar Nasional Teknologi Informasi dan Komunikasi, 2015.
DOI: https://doi.org/10.18860/mat.v12i1.8973
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Fakhris Khusnu Reza Mahfud
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal is indexed by :
_______________________________________________________________________________________________________________
Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN : 2477-2550