In Silico Analysis of Kaempferol from Foeniculum vulgare and Coumarin from Alyxia reinwardtii Targeting Anti-Apoptotic Proteins: Potential Anticancer Agents

Honesty Nurizza Pinanti, Nurul jadid Mubarakati

Abstract


Foeniculum vulgare and Alyxia reinwardtii are two herbal plants frequently co-utilized by Javanese people in Indonesia to treat various diseases, as evidenced by ancient manuscripts about traditional medicine (Jamu). However, the potential of the combination of kaempferol and coumarin, the major bioactive compounds derived from each plant, to inhibit BCL-2 and BCL-XL anti-apoptotic proteins in cancer has not yet been investigated. Therefore, this study aimed to identify the inhibitory activity of kaempferol, coumarin, and their combinations on BCL-2 and BCL-XL through in silico studies. The physicochemical properties of both compounds were predicted using the SwissADME web server. Meanwhile, the docking activity prediction of these compounds on BCL-2 and BCL-XL was performed using the molecular docking method with HEX 8.0.0 CUDA. Docking visualization was performed using BIOVIA Discovery Studio 2020 Client. The results of this study indicated that kaempferol could bind the binding groove of both BCL-2 (-246.40 kcal/mol) and BCL-XL (-245.76 kcal/mol), whereas coumarin only interacted with the binding groove of BCL-XL (-160.61 kcal/mol). The combination of the two compounds exhibited a stronger interaction with BCL-2 (-248.50 kcal/mol) and BCL-XL (-260.43 kcal/mol) compared to each compound individually. Therefore, the combination of these compounds is predicted to exhibit greater anticancer potential than either kaempferol or coumarin alone. Nevertheless, further extensive studies are required to validate the findings of this study.

Keywords


Alyxia reinwardtii, BCL-2, BCL-XL, Cancer, Foeniculum vulgare

Full Text:

PDF

References


[1] F. Bray et al., “Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA Cancer J Clin, vol. 74, no. 3, pp. 229–263, 2024, doi: 10.3322/caac.21834.

[2] Y. Xia, M. Sun, H. Huang, and W. L. Jin, “Drug repurposing for cancer therapy,” Signal Transduct. Target. Ther, vol. 9, no. 1, pp. 1-33, 2024, doi: 10.1038/s41392-024-01808-1.

[3] Y. Zhao, L. S. Chard Dunmall, Z. Cheng, Y. Wang, and L. Si, “Natural products targeting glycolysis in cancer,” Front. Pharmacol., vol 13, pp. 1-18, 2022, doi: 10.3389/fphar.2022.1036502.

[4] L. Kursvietiene et al., “Anti-cancer properties of resveratrol: A focus on its impact on mitochondrial functions,” Antioxidants, vol. 12, no. 12, pp. 1-24, 2023, doi: 10.3390/antiox12122056.

[5] A. M. Castañeda, C. M. Meléndez, D. Uribe, and J. Pedroza‑Díaz, “Synergistic effects of natural compounds and conventional chemotherapeutic agents: Recent insights for the development of cancer treatment strategies,” Heliyon, vol. 8, no. 6, pp. 1-15, 2022,doi: 10.1016/j.heliyon.2022.e09519.

[6] S. Suyami, Sumarno, and T. T. Mumfangati, Tamba Jawa: Sistem Pengobatan Tradisional Jawa dalam Serat Primbon Jampi Jawi. Yogyakarta, Indonesia: Dinas Kebudayaan Kabupaten Sleman, 2019.

[7] Badan Pengawas Obat dan Makanan Republik Indonesia, Ramuan Obat Tradisional Indonesia: Serat Centhini, Buku Jampi dan Kitab Tibb. Jakarta, Indonesia: Badan Pengawas Obat dan Makanan Republik Indonesia, 2016.

[8] S. Parveen, I. U. H. Bhat, and R. Bhat, “Kaempferol and its derivatives: Biological activities and therapeutic potential,” Asian Pac. J. Trop. Biomed., vol. 13, no. 10, pp. 411–420, 2023, doi: 10.4103/2221-1691.387747

[9] H. Barakat et al., “Phenolics and volatile compounds of Fennel (Foeniculum vulgare) seeds and their sprouts prevent oxidative DNA damage and ameliorate CCl4-induced hepatotoxicity and oxidative stress in rats,” Antioxidants, vol. 11, no. 12, pp. 1-22, 2022, doi: 10.3390/antiox11122318.

[10] M. I. Hussain, Q. A. Syed, M. N. K. Khattak, B. Hafez, M. J. Reigosa, and A. El‑Keblawy, “Natural product coumarins: biological and pharmacological perspectives,” Biologia, vol. 74, no. 7, pp. 863–888, 2019, doi: 10.2478/s11756-019-00242-x.

[11] V. K. Sitthan, M. S. Abdallah, M. Nallappan, S.-H. Choi, J.-H. Paik, and R. Go, “Antioxidant and antibacterial activity of different solvent extracts of leaves and stem of Alyxia reinwardtii Blume,” Malays. Appl. Biol., vol. 52, no. 6, pp. 67–80, 2023, doi: 10.55230/mabjournal.v52i6.2581.

[12] F. A. D. Setiawan, H. Soetjipto, and S. Hartini, “Profil fisiko-kimia minyak kulit batang pulosari (Alyxia reinwardtii Bl.) dan aktivitas antioksidannya,” Indonesia Chimica Acta, vol. 8, no. 1, pp. 12–30, 2023. Available: https://iptek.its.ac.id/index.php/kimia/article/download/13856/7604. [Accessed: Jun. 15, 2025].

[13] R. Kubina, K. Krzykawski, A. Dziedzic, and A. Kabała‑Dzik, “Kaempferol and fisetin‑related signaling pathways induce apoptosis in head and neck cancer cells,” Cells, vol. 12, pp. 1-20, 2023, doi: 10.3390/cells12121568.

[14] M. Shahbaz et al., “Recent perspectives on anticancer potential of coumarin against different human malignancies: An updated review,” Food Sci. Nutr, vol. 13, pp. 1-17, 2024, doi: 10.1002/fsn3.4696.

[15] M. T. Muhammed and E. Aki-Yalcin, “Molecular docking: Principles, advances, and its applications in drug discovery,” Lett Drug Des Discov, vol. 21, no. 3, pp. 480–495, 2022, doi: 10.2174/1570180819666220922103109.

[16] S. Hafezi and M. Rahmani, “Targeting BCL‑2 in Cancer: Advances, Challenges, and Perspectives,” Cancers (Basel), vol. 13, no. 6, pp. 1-15, 2021, doi: 10.3390/cancers13061292.

[17] D. Kaloni, S. T. Diepstraten, A. Strasser, and G. L. Kelly, “BCL‑2 protein family: attractive targets for cancer therapy,” Apoptosis, vol. 28, no. 1–2, pp. 20–38, 2023, doi:10.1007/s10495-022-01780-7.

[18] CI. Ahmad, A. E. Kuznetsov, A. S. Pirzada, K. F. Alsharif, M. Daglia, and H. Khan, “Computational pharmacology and computational chemistry of 4‑hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT‑based approaches,” Front. Chem, vol. 11, pp. 1-15, 2023, doi: 10.3389/fchem.2023.1145974.

[19] G. Macindoe, L. Mavridis, V. Venkatraman, M. D. Devignes, and D. W. Ritchie, “HexServer: An FFT-based protein docking server powered by graphics processors,” Nucleic Acids Res, vol. 38, no. 2, 2010, doi: 10.1093/nar/gkq311.

[20] U. Baroroh, Z. S. Muscifa, W. Destiarani, F. G. Rohmatulloh, and M. Yusuf, “Molecular interaction analysis and visualization of protein‑ligand docking using Biovia Discovery Studio Visualizer,” Indones. J. Comput. Biol, vol. 2, no. 1, pp. 22-30, 2023, doi:10.24198/ijcb.v2i1.46322.

[21] D. Ramírez and J. Caballero, “Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data?”, Molecules, vol. 23, no. 5, p. 1-17, 2018, doi: 10.3390/molecules23051038.

[22] X. Zhang et al., “Synthesis of 4-thiosubstituted flavan derivatives and their hypoglycemic activities,” Fitoterapia, vol. 162, 2022, doi: 10.1016/j.fitote.2022.105255.

[23] A. M. Rabie, “Potent toxic effects of Taroxaz‑104 on the replication of SARS‑CoV‑2 particles,” Chem. Biol. Interact., vol. 343, pp. 1-10, 2021, doi: 10.1016/j.cbi.2021.109480.

[24] P. Singh and B. Lim, “Targeting Apoptosis in Cancer,” Curr. Oncol. Rep., vol. 24, no. 3, pp. 273–284, 2022, doi: 10.1007/s11912-022-01199-y.

[25] B. A. Carneiro and W. S. El-Deiry, “Targeting apoptosis in cancer therapy,” Nat. Rev. Clin. Oncol, vol. 17, no. 7, pp. 395-417, 2020, doi: 10.1038/s41571-020-0341-y.

[26] G. Price and D. A. Patel, Drug Bioavailability. United States: StatPearls Publishing LLC, 2024.

[27] S. Qian, Z. Wei, W. Yang, J. Huang, Y. Yang, and J. Wang, “The role of BCL-2 family proteins in regulating apoptosis and cancer therapy,” Front. Oncol, vol. 12, pp. 1–16, 2022, doi: 10.3389/fonc.2022.985363.

[28] L. Lossi, “The concept of intrinsic versus extrinsic apoptosis,” Biochem. J., vol. 479, no. 3, pp. 357–384, 2022, doi: 10.1042/BCJ20210854.

[29] J. Porter et al., “Tetrahydroisoquinoline amide substituted phenyl pyrazoles as selective Bcl-2 inhibitors,” Bioorg Med Chem Lett, vol. 19, no. 1, pp. 230–233, 2009, doi: 10.1016/j.bmcl.2008.10.113.

[30] CC. Cheon and S.‑G. Ko, “Synergistic effects of natural products in combination with anticancer agents in prostate cancer: A scoping review,” Frontiers in Pharmacology, vol. 13, pp. 1-10, 2022, doi: 10.3389/fphar.2022.963317.

[31] M. Li, D. Wang, J. He, L. Chen, and H. Li, “Bcl‑XL: A multifunctional anti-apoptotic protein,” Pharmacol. Res., vol. 151, 2020, doi: 10.1016/j.phrs.2019.104547.

[32] C. Alcon et al., “HRK downregulation and augmented BCL‑xL binding to BAK confer apoptotic protection to therapy-induced senescent melanoma cells,” Cell Death Differ., vol. 32, pp. 646–656, 2025, doi: 10.1038/s41418-024-01299-6.

[33] Y. Li et al., “The novel small molecule BH3 mimetic nobiletin synergizes with vorinostat to induce apoptosis and autophagy in small cell lung cancer,” Biochem. Pharmacol, vol. 211, 2023, doi: 10.1016/j.bcp.2023.115807.

[34] M. Shahbaz et al., “Potential effect of kaempferol against various malignancies: Recent advances and perspectives,” Food & Agricultural Immunology, vol. 34, no. 1, pp. 1–32, 2023, doi: 10.1080/09540105.2023.2265690.




DOI: https://doi.org/10.18860/elha.v10i3.35082

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 El-Hayah:Jurnal Biologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEXING OF El-Hayah :

----------------------------------------------------------------------------------

EDITORIAL OFFICE

Program Study of Biology
Faculty of Science and Technology
State Islamic University Maulana Malik Ibrahim, Malang, Indonesia
Jl. Gajayana No. 50 Malang 65144
Telp./Fax: (+62 341) 558933

e-mail: elhayah@uin-malang.ac.id

E-ISSN 2657-0726 | P-ISSN 2086-0064

----------------------------------------------------------------------------------


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.