Ball Detection in Wheeled Soccer Robot Using the YOLOv8 Model
Abstract
Keywords
Full Text:
PDFReferences
[1] M. Kulshreshtha, S. S. Chandra, P. Randhawa, G. Tsaramirsis, A. Khadidos, and A. O. Khadidos, “Oatcr: Outdoor autonomous trash-collecting robot design using yolov4-tiny,” Electron., vol. 10, no. 18, 2021, doi: 10.3390/electronics10182292.
[2] D. Diono, M. J. W. Wicaksono, A. Jefiza, and D. R. Prayudha, “Pendeteksian Objek Hasil Pengepresan Kaleng dan Botol dengan Metode You Only Look Once (YOLO) yang Diaplikasikan pada Mesin Sortir Pembelajaran PBL,” J. Integr., vol. 16, no. 1, pp. 1–10, 2024, doi: 10.30871/ji.v16i1.4598.
[3] H. Soebhakti, S. Prayoga, R. A. Fatekha, and M. B. Fashla, “The Real-Time Object Detection System on Mobile Soccer Robot using YOLO v3,” Proc. 2019 2nd Int. Conf. Appl. Eng. ICAE 2019, 2019, doi: 10.1109/ICAE47758.2019.9221734.
[4] U. Aulia, I. Hasanuddin, M. Dirhamsyah, and N. Nasaruddin, “Heliyon A new CNN-BASED object detection system for autonomous mobile robots based on real-world vehicle datasets,” Heliyon, vol. 10, no. 15, p. e35247, 2024, doi:10.1016/j.heliyon. 2024.e35247.
[5] S. Susanto, F. A. Putra, and R. Analia, “XNOR-YOLO: The high precision of the ball and goal detecting on the barelang-FC robot soccer,” Proc. ICAE 2020 - 3rd Int. Conf. Appl. Eng., 2020, doi: 10.1109/ ICAE50557.2020.9350386.
[6] W. Lee, K. Kim, W. Ahn, J. Kim, and D. Jeon, “A Real-Time Object Detection Processor With XNOR -Based Variable-Precision Computing Unit,” IEEE Trans. Very Large Scale Integr. Syst., vol. 31, no. 6, pp. 749–761, 2023, doi:10.1109/TVLSI.2023.3257198.
[7] T. Bräunl, Robots and Controllers. 2022. doi: 10.1007/978-981-16-0804-9_1.
[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection”.
[9] A. C. Nugraha, M. L. Hakim, S. Yatmono, and M. Khairudin, “Development of Ball Detection System with YOLOv3 in a Humanoid Soccer Robot,” J. Phys. Conf. Ser., vol. 2111, no. 1, pp. 1–17, 2021, doi: 10.1088/1742-6596/2111/1/012055.
[10] F. F. Sanubari and R. D. Puriyanto, “Deteksi Bola dan Gawang dengan Metode YOLO Menggunakan Kamera Omnidirectional pada Robot KRSBI-B,” Bul. Ilm. Sarj. Tek. Elektro, vol. 4, no. 2, pp. 76–85, 2022, doi: 10.12928/ biste.v4i2.6712.
[11] H. Jati, N. A. Ilyasa, and D. D. Dominic, “Enhancing Humanoid Robot Soccer Ball Tracking, Goal Alignment, and Robot Avoidance Using YOLO-NAS,” J. Robot. Control, vol. 5, no. 3, pp. 829–838, 2024, doi: 10.18196/jrc.v5i3.21839.
[12] Д. Л. Я. Мобильного, Р. С. Использованием, and Y. И. Strong, “Real-Time Object Detection And Tracking For Mobile Robot Using YOLOv8 and Strong Sort,” vol. 11, no. 116, 2023.
[13] E. Upton and G. Halfacree, Raspberry Pi® User Guide. 2016. doi: 10.1002/ 9781119415572.
[14] K. W. Humaidillah, “Modul Belajar Arduino Uno,” p. 52, 2019.
[15] C. D. Manning, “Introduction to Information Retrieval,” no. c, 2009, [Online]. Available: https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
[16] A. Kurniawan and A. Harumwidiah, “An evaluation of the artificial neural network based on the estimation of daily average global solar radiation in the city of Surabaya,” vol. 22, no. 3, pp. 1245–1250, 2021, doi: 10.11591/ijeecs.v22.i3.pp1245-1250.
DOI: https://doi.org/10.18860/ijeie.v1i2.39317
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Gajayana Street 50 Malang 65144, Jawa Timur, Indonesia
This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International
