In Silico Analysis of Phytoestrogens' Neuroprotective Effect on N-methyl-D-aspartate (NMDA) Receptors

Faisal Akhmal Muslikh, Rizki Rahmadi Pratama, Burhan Ma'arif, Marisca Evalina Gondokesumo

Abstract


cause of death and disability globally. One of the causes is associated with cell signaling disorders, neuronal apoptosis, inflammation, and the deposition of aggregate proteins. The N-methyl-D-aspartate (NMDA) receptor is a glutamate receptor that, when activated, causes synaptic dysfunction and leads to neuronal death. Phytoestrogen compounds are able to replace the role of estrogen in maintaining body homeostasis, including in the CNS.  Objectif: This study aims to determine the role of phytoestrogen compounds in inhibiting NMDA activation (1PBQ), which causes neurodegenerative diseases. Methods: The method used is molecular docking with the AutoDockTools 1.5.6 program. The prediction of pharmacokinetic and pharmacodynamic properties used SwissADME, while the toxicity used pkCSM and ProTox II. Results:  The results of docking using the 1PBQ protein showed that the compounds α-amyrin, β-amyrin and eudesmin had the best binding potential compared to 17β-estradiol which was the positive control. Pharmacokinetic and pharmacodynamic tests showed that the three compounds had good permeability and strong lipophilicity, so they could penetrate cell membranes, and were not toxic, except for eudesmin, which was included in class IV in the toxicity test using ProTox II. Conclusion :   α-amyrin and β-amyrin compounds have the potential to treat neurodegenerative diseases against NMDA receptors (1PBQ).

Full Text:

PDF

References


Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, ... & Tawfik EA. Neurodegenerative Diseases: Implications of Environmental and Climatic Influences on Neurotransmitters and Neuronal Hormones Activities. International Journal of Environmental Research and Public Health. 2022; 19(19): 12495. 2. Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, & Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023; 186(4): 693-714. 3. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, ... & Fischer F. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2019; 18(5): 459-480. 4. Raymond CR. LTP forms 1, 2 and 3: different mechanisms for the ‘long’in long-term potentiation. Trends in neurosciences. 2007; 30(4): 167-175. 5. Świetlik D, Kusiak A, & Ossowska A. Computational Modeling of Therapy with the NMDA Antagonist in Neurodegenerative Disease: Information Theory in the Mechanism of Action of Memantine. International Journal of Environmental Research and Public Health. 2022; 19(8): 4727. 6. Liu J, Chang L, Song Y, Li H, & Wu Y. The role of NMDA receptors in Alzheimer’s disease. Frontiers in neuroscience. 2019; 13: 43 7. Rietjens IM, Louisse J, & Beekmann K. The potential health effects of dietary phytoestrogens. British journal of pharmacology. 2017; 174(11): 1263-1280. 8. Domínguez-López I, Yago-Aragón M, Salas-Huetos A, Tresserra-Rimbau A, & Hurtado-Barroso S. Effects of dietary phytoestrogens on hormones throughout a human lifespan: A review. Nutrients. 2020; 12(8): 2456. 9. Aditama AP, Muslikh FA, Shirvi IN, Islamiyah FR, Putra KH, Inayatilah FR, ... & Rahayu A. Efek induksi proliferasi sel osteoblas tulang trabekular mencit jantan oleh ekstrak etanol 96% daun Semanggi (Marsilea crenata Presl.). Jurnal Sains dan Kesehatan. 2021; 3(4): 429-435. 10. Ma'arif B, Muslikh FA, Najib LA, Atmaja RRD, & Dianti MR. In silico antiosteoporosis activity of 96% ethanol extract of Chrysophyllum cainito L. leaves. In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR). 2021, December; 1:61-66. 11. Ma'arif, B., Muslikh, F. A., Amalia, D., Mahardiani, A., Muchlasi, L. A., Riwanti, P., ... & Agil, M. (2022). Metabolite Profiling of the Environmental-Controlled Growth of Marsilea crenata Presl. and Its In Vitro and In Silico Antineuroinflammatory Properties. Borneo Journal of Pharmacy, 5(3), 209-228. 12. Lavier MCC, & Pelissero CB. Phytoestrogens and Health Effects. Nutrients. 2023; 15(2): 317. 13. Ma'arif B, Muslikh FA, Anggraini W, Taek MM, Laswati H, & Agil M. In vitro anti-neuroinflammatory effect of genistein (4', 5, 7-trihydroxyisoflavone) on microglia HMC3 cell line, and in silico evaluation of its interaction with estrogen receptor-β. International Journal of Applied Pharmaceutics. 2021; 13(4): 183-187. 14. Aditama APR, Ma'arif B, & Muslikh FA. Effect of osterix and osteocalcin enhancement by quercetin (3, 3′, 4′, 5, 7-pentahydroxyflavone) on osteoblast hFOB 1.19 cell line. International Journal of Applied Pharmaceutics, 2022; 14: 32-35. 15. Desmawati D, & Sulastri D. Phytoestrogens and their health effect. Open access Macedonian journal of medical sciences. 2019; 7(3): 495. 16. Ma'arif B, Suryanto S, Muslikh FA, Suryadinata A, & Fauziyah B. Systematic Review: Anti-Osteoporosis Potential Activities Of Phytoestrogen Compounds In Chrysophyllum cainito L., Elaeis guineensis Jacq., Lannea acida Rich., Marsilea crenata Presl., and Medicago sativa L. Journal of Pharmaceutical Sciences and Community. 2022; 19(1): 41-52. 17. Muslikh FA, Samudra RR, Ma’arif B, Ulhaq ZS, Hardjono S, & Agil M. In Silico Molecular Docking and ADMET Analysis for Drug Development of Phytoestrogens Compound with Its Evaluation of Neurodegenerative Diseases. Borneo Journal of Pharmacy. 2022; 5(4): 357-366. 18. Ma'arif B, Fihuda DAP, Muslikh FA, Syarifuddin S, Fauziyah B, Sari DP, & Agil M. Studi in silico penghambatan aktivasi TLR2 ekstrak etanol daun semanggi (Marsilea crenata Presl.). Jurnal Tumbuhan Obat Indonesia. 2022; 15(1): 31-40. 19. Sliwoski G, Kothiwale S, Meiler J, & Lowe EW. Computational methods in drug discovery. Pharmacological reviews. 2014; 66(1): 334-395. 20. Muslikh FA, Samudra RR, & Ma'arif B. Prediksi Senyawa Fraksi Etil Asetat Daun Semanggi (Marsilea crenata Presl.) Sebagai Agen Antineuroinflamasi (agonis ERα). JIKSN: Jurnal Ilmu Kesehatan dan Sains Nusantara. 2023; 1(01): 10-21. 21. Muslikh FA, Pratama RR, Gondokesumo ME. Senyawa Fitoestrogen untuk Terapi Penyakit Neurodegeneratif terhadap Reseptor TLR2: Pendekatan In Silico. Jurnal Kesehatan Islam. 2023; 12(1): 17-24. 22. Pinzi L, & Rastelli G. Molecular docking: shifting paradigms in drug discovery. International journal of molecular sciences. 2019; 20(18): 4331. 23. Shah K, Mujwar S, Gupta JK, Shrivastava SK, & Mishra P. Molecular docking and in silico cogitation validate mefenamic acid prodrugs as human cyclooxygenase-2 inhibitor. Assay and drug development technologies. 2019; 17(6): 285-291. 24. Utami W, Aziz HA, Fitriani IN, Zikri AT, Mayasri A, & Nasrudin D. In silico anti-inflammatory activity evaluation of some bioactive compound from Ficus religiosa through molecular docking approach. In Journal of Physics: Conference Series. 2020, June; 1563(1): 012024 25. Shaikh IA, Muddapur UM, Badiger S, Kulkarni M, Mahnashi MH, Alshamrani SA, ... & Iqubal SS. In silico molecular docking and simulation studies of protein HBx involved in the pathogenesis of hepatitis B virus-HBV. Molecules. 2022; 27(5): 1513. 26. Pinto CL, Bloom RA, & Laurenson JP. An Approach for Using In Vitro and In Silico Data to Identify Pharmaceuticals with Potential (Anti‐) Estrogenic Activity in Aquatic Vertebrates at Environmentally Relevant Concentrations. Environmental toxicology and chemistry. 2019; 38(10): 2154-2168. 27. Gondokesumo ME, & Kurniawan IM. Molecular docking study of sappan wood extract to inhibit PBP2A enzyme on methicillin-resistant Staphylococcus aureus (MRSA). Journal of Basic and Clinical Physiology and Pharmacology. 2020; 30(6): 20190282. 28. Nursamsiar N, Mangande MM, Awaluddin A, Nur S, & Asnawi A. In Silico Study of Aglycon Curculigoside A and Its Derivatives as α-Amilase Inhibitors. Indonesian Journal of Pharmaceutical Science and Technology. 2020; 7(1): 29-37. 29. Odoemelam CS, Hunter E, Simms J, Ahmad Z, Chang MW, Percival B, ... & Wilson PB. In silico ligand docking approaches to characterise the binding of known allosteric modulators to the glucagon-like peptide 1 receptor and prediction of ADME/Tox properties. Applied Biosciences. 2022; 1(2): 143-162. 30. Lukitaningsih E, Wisnusaputra A, & Sudarmanto BA. Scrining in silico active compound of Pachyrrhizus erosus as antitirosinase on Aspergillus oryzae (computattional study with homology modeling and molecular docking). Majalah Obat Tradisional. 2009; 20(1): 7-15. 31. Sawitri ME, & Prasetyawan S. Studi Interaksi Kompleks Inulin dan Fraksi Kasein Melalui Analisis In-Silico dan Molecular Docking Sebagai Dasar Pengembangan Prebiotic Fermented Milk. Jurnal Ilmu dan Teknologi Hasil Ternak (JITEK). 2019; 14(1): 11-19. 32. Mardianingrum R, Herlina T, & Supratman U. Isolasi dan Molecular Docking Senyawa 6, 7-Dihidro-17-Hidroksierisotrin dari Daun Dadap Belendung (Erythrina poeppigiana) terhadap Aktivitas Sitotoksik Antikanker Payudara MCF-7. Chimica et Natura Acta. 2015; 3(3). 33. Az-Zahra F, Afidika J, Diamantha SD, Rahmani AE, Fatimah S, Aulifa DL, & Sitinjak BD. Studi In Silico Senyawa dalam Daun Sirih (Piper betle L.) sebagai Inhibitor Enzim Asetilkolinesterase (AChE) pada Penyakit Alzheimer. Indonesian Journal of Biological Pharmacy. 2022; 2(2): 44-58. 34. Rahmadi R, Andika, Nashihah S. Studi Penambatan Molekuler Senyawa Flavonoid Daun Jambu Biji (Psidium guajava L.) Terhadap Sars-Cov-2 3cl Protease. Medical Sains: Jurnal Ilmiah Kefarmasian. 2021; 6(1): 9-24. 35. Rochim NA, Hakim R, Damayanti DS. Potensi Ekstrak Etanol Daun Sirsak (Annona Muricata Linn.) Sebagai Pengaktif LDL Receptor Dan Penghambat HMG-CoA Reductase Secara In silico. J Kedokteran Komunitas. 2021; 9:11. 36. Hidayatullah JA, Widiyana AP, & Damayanti DS. Studi In Silico: Analisis Potensi Kacang Merah (Phaseolus vulgaris) Sebagai Anti-Alzheimer dengan Aktivasi Alfa Sekretase dan Penghambatan Beta Sekretase. Jurnal Bio Komplementer Medicine. 2022; 9(1). 37. Ma'arif B, Muslikh FA, Fihuda DAP, Syarifuddin S, & Fauziyah B. Prediction of compounds from 96% Ethanol Extract of Marsilea crenata Presl. Leaves in increasing estrogen receptor-α activation. In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR). (021, December; 1: 67-76. 38. Lipinski C A, Lombardo F, Dominy BW, & Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 1997; 23(1-3): 3-25. 39. Villa A, Vegeto E, Poletti A, & Maggi A. Estrogens, neuroinflammation, and neurodegeneration. Endocrine reviews. 2016; 37(4): 372-402. 40. Ma’arif B, Samudra RR, Muslikh FA, Dewi TJD, & Muchlasi LA. Antineuroinflammatory Properties of Compounds from Ethyl Acetate Fraction of Marsilea crenata C. Presl. Against Toll-Like Receptor 2 (3A7B) In Silico. In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR). 2022, December; 2: 8-20). 41. Supandi, Yeni, Merdekawati F. In silico study of pyrazolylaminoquinazoline toxicity by lazar, protox, and admet predictor. Journal of Applied Pharmaceutical Science. 2018; 8(9): 119-129. 42. Cheng A. In silico prediction of hepatotoxicity. Current Computer-Aided Drug Design. 2009; 5(2): 122-127. 43. Ma'arif B, Aminullah M, Saidah NL, Muslikh FA, Rahmawati A, Indrawijaya YYA, ... & Taek MM. Prediction of antiosteoporosis activity of thirty-nine phytoestrogen compounds in estrogen receptor-dependent manner through in silico approach. Tropical Journal of Natural Product Research. 2021; 5(10): 1727-1734. 44. Verheyen GR, Braeken E, Van Deun K, & Van Miert S. Evaluation of in silico tools to predict the skin sensitization potential of chemicals. SAR and QSAR in Environmental Research, 2017; 28(1): 59-73. 45. Liu J, Chang L, Song Y, Li H, & Wu Y. The role of NMDA receptors in Alzheimer’s disease. Frontiers in neuroscience. 2019; 13: 43. 46. Paoletti P, Bellone C, & Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience. 2013; 14(6): 383-400. 47. Kodis EJ, Choi S, Swanson E, Ferreira G, & Bloom GS. N-methyl-D-aspartate receptor–mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer's disease. Alzheimer's & Dementia. 2018; 14(10): 1302-1312. 48. Hogan-Cann AD, & Anderson CM. Physiological roles of non-neuronal NMDA receptors. Trends in pharmacological sciences. 2016; 37(9): 750-767. 49. Dzamba D, Honsa P, & Anderova M. NMDA receptors in glial cells: pending questions. Current neuropharmacology. 2013; 11(3): 250-262. 50. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends in neurosciences. 2009; 32(12): 638-647. 51. Ting KK, Brew BJ, & Guillemin GJ. Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer's disease. Journal of neuroinflammation. 2009; 6: 1-13. 52. András IE, Deli MA, Veszelka S, Hayashi K, Hennig B, & Toborek M. The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. Journal of Cerebral Blood Flow & Metabolism. 2007; 27(8): 1431-1443. 53. Basuroy S, Leffler CW, & Parfenova H. CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. American Journal of Physiology-Cell Physiology. 2013; 304(11): C1105-C1115.




DOI: https://doi.org/10.18860/jim.v7i2.21381

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Faculty of Medical and Health Sciences,
Universitas Islam Negeri Maulana Malik Ibrahim
Gedung Ibnu Thufail Lt.1, Jln. Locari, Desa Tlekung, Kota Batu
Phone (+62) 85746163772, (+62) 8563588384, Faximile (+62) 341 558933
e-mail: medicaljournal@uin-malang.ac.id


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.