ANALYZING THE APLICATION OF THE NAIVE BAYES METHOD IN EMAIL SPAM FILTERING

Yoga Pratama Kusendi, Riski Waloyojati

Abstract


The utilization of email as a communication medium has adverse effects, one of which is the inundation of unsolicited emails in the inbox, commonly known as spam. In response to the prevalence of spam in email communications, research has been conducted to develop software capable of automatically classifying spam and non-spam emails. Spam filter developers often employ the Naive Bayes algorithm due to its simplicity and ease of implementation. To enhance accuracy and expedite the computational process, several measures must be undertaken. The development of a Bayesian filter involves three stages: building a spam database, training the Bayesian filter, and filtering.Keywords: Naïve Bayes, Email, Spam.

Full Text:

PDF

References


[1] C. Dürscheid and C. Frehner, “Email communication,” Pragmat. Comput. Commun., pp. 35–54, 2013, doi: 10.1515/9783110214468.35.

[2] I. Tafa, E. Koçi, R. Aliaj, and S. Muzhika, “Analysis of email phishing in session hijacking,” Int. J. Comput. Sci. Inf. Secur., vol. 19, no. 10, pp. 61–66, 2021.

[3] Z. Chuan, L. U. Xian-liang, Z. Xu, and H. O. U. Meng-shu, “An Improved Bayesian with Application to Anti-Spam Email,” vol. 3, no. 1, pp. 1–4, 2005.

[4] D. Berend and A. Kontorovich, “A finite sample analysis of the Naive Bayes classifier,” J. Mach. Learn. Res., vol. 16, no. 1141, pp. 1519–1545, 2015.

[5] C. Lopes, P. Cortez, P. Sousa, M. Rocha, and M. Rio, “Symbiotic filtering for spam email detection,” Expert Syst. Appl., vol. 38, no. 8, pp. 9365–9372, 2011, doi: 10.1016/j.eswa.2011.01.174.

[6] B. Sonare, G. J. Dharmale, A. Renapure, H. Khandelwal, and S. Narharshettiwar, “E-mail Spam Detection Using Machine Learning,” 2023 4th Int. Conf. Emerg. Technol. INCET 2023, vol. 14, no. 03, pp. 677–683, 2023, doi: 10.1109/INCET57972.2023.10170187.

[7] T. A. Almeida, J. Almeida, and A. Yamakami, “Spam filtering: How the dimensionality reduction affects the accuracy of Naive Bayes classifiers,” J. Internet Serv. Appl., vol. 1, no. 3, pp. 183–200, 2011, doi: 10.1007/s13174-010-0014-7.

[8] D. Nurani, “Perancangan Aplikasi Email Menggunakan Algoritma Caesar CIPHER dan Base64,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 2, no. 3, p. 175, 2018, doi: 10.14421/jiska.2018.23-07.

[9] S. Wibowo and Suprayogi, “Aplikasi Enkripsi Email Dengan Menggunakan Metode Blowfish Berbasis J2Se,” Techno.COM, vol. 13, no. 2, pp. 75–83, 2014.

[10] A. Ginting, R. R. Isnanto, and I. P. Windasari, “Implementasi Algoritma Kriptografi RSA untuk Enkripsi dan Dekripsi Email,” J. Teknol. dan Sist. Komput., vol. 3, no. 2, p. 253, 2015, doi: 10.14710/jtsiskom.3.2.2015.253-258.

[11] A. K. Seewald, “An evaluation of Naive Bayes variants in content-based learning for spam filtering,” Intell. Data Anal., vol. 11, no. 5, pp. 497–524, 2007, doi: 10.3233/ida-2007-11505.

[12] N. F. Rusland, N. Wahid, S. Kasim, and H. Hafit, “Analysis of Naïve Bayes Algorithm for Email Spam Filtering across Multiple Datasets,” IOP Conf. Ser. Mater. Sci. Eng., vol. 226, no. 1, 2017, doi: 10.1088/1757-899X/226/1/012091.




DOI: https://doi.org/10.18860/jocdas.v2i1.28302

DOI (PDF): https://doi.org/10.18860/jocdas.v2i1.28302.g11560

Refbacks

  • There are currently no refbacks.