Metode Backward Time Central Space dalam Penyelesaian Model Matematika Vibrasi Dawai pada Alat Musik Petik
Abstract
This research was conducted to obtain a numerical solution of the mathematical model of string vibration on stringed instruments. This mathematical model is a representation of the phenomenon of string vibration on a stringed instrument subject to deviation. The model was constructed by Kusumastuti, et al (2017) and is in the form of a second-order partial differential equation. The method used in completing this research is the BTCS (Backward Time Central Space) method. The numerical solution is obtained by the following steps, 1). Discretize mathematical models, as well as discretize initial conditions and boundary conditions. 2). Performing stability analysis of numerical solutions to determine the terms of solution stability and conducting consistency analysis as a condition of the convergence of the obtained numerical solutions. 3). Simulate numerical solutions and perform graph interpretations. The results show that the numerical solution of the mathematical model of string vibration on stringed instruments is unconditionally stable and has an error order (〖∆x〗^2,〖∆t〗^3).
Keywords
Full Text:
PDFReferences
Kusumastuti A, Brylliant DN, Hidayati NA. Construction analysis of the string motion model on Sasando mu-17sical instrument. IOP Conference Series Earth and Environmental Science 2020; 456:012075. doi: 10.1088/1755-181315/456/1/01207519
Permata HW, Kusumastuti A. Solusi numerik model gerak osilasi vertikal dan torsional pada jembatan gantung.37Jurnal Riset Mahasiswa Matematika 2021; 1(1):1–13. doi 10.18860/jrmm.v1i1.13409
Giordano, Nicholas, "The Physics of Vibrating Strings", American Institute of Physics
Sukarasa, I Made, "Analisis Kestabilan Numerik Metode Beda Hingga pada Persamaan Getaran Membran dan Simulasinya", Bali: SENAPATI, 2018.
Purwanto, Agus, "Analisis dan Sintesa Bunyi Dawai pada Gitar Semi-Akustik", Seminar Nasional MIPA, (240-246), 2006.
Gulla, Jan, “Modelling the Wave Motion of a Guitar String”, Essay tidak dipublikasikan, 2011
Kusumastuti A, Jamhuri M, Hidayati NA. Analytical solution of the string vibration model on Sasando musical20instrument. Journal of Physics: Conference Series 2019; 1321(2). doi: 10.1088/1742-6596/1321/2/02208821
Kusumastuti A, Khudzaifah M, Widayani H, Zuhriah A. Numerical solution of Sasando string motion model. In:22 Proceedings of the International Conference on Mathematics and Islam; Malang, Indonesia; 2018. pp. 537–541. doi:2310.5220/000852500537054124
Zauderer, E., "Partial Differential Equations of Applied Mathematics Third Edition". New York: John Wiley & Sons, Inc, 2006
Strauss, A. W., Partial Differential Equations an Introduction Second Edition", Amerka: John Wiley & Sons, Ltd, 2007.
Flaherty, E Joseph, "Modeling, Mesh Generation, and Adaptive Numerical Method for Partial Differential Equations" Springer-Verlag, 1993
Setiawan, Agus. 2006. Pengantar Metode Numerik. Yogyakarta: Andi
Triatmodjo, B., "Metode Numerik Dilengkapi dengan Program Komputer", Yogyakarta: Beta Offset, 2002
Kusumastuti A, Nurhayati SSY. Analysis of torque vertical on string model. Jurnal Teknologi 2016; 78(5): 351-354.25doi: 10.11113/jt.v78.8335
Morton, K. W. & Mayers David, "Numerical Solution of Partial Differential Equation Second Edition", New York: Cambridge University, 2005, 1998
DOI: https://doi.org/10.18860/jrmm.v1i4.14454
Refbacks
- There are currently no refbacks.