Analisis Dinamik Model Matematika Penyebaran COVID-19 Pada Populasi SEIR

Ester Meyliana, Ari Kusumastuti, Juhari Juhari


This study discusses the dynamic analysis of the mathematical model of the spread of COVID-19 using daily cases in Indonesia which are classified into four variables, namely, Susceptible (S), Exposed (E), Infected (I), and Recovered (R) which are then analyzed dynamically by calculate the equilibrium point and look for stability properties. The two equilibrium points of this model are the disease-free equilibrium point  and the endemic equilibrium point . Then, it is linearized around the equilibrium point using the given parameters. Linearization around the equilibrium point  produces four eigenvalues, one of which is positive. Linearization around the equilibrium point  yields two negative real eigenvalues and a pair of complex eigenvalues with negative real parts. Phase portraits and numerical simulations have shown that all variables S, E, I, and R will be asymptotically stable locally towards the equilibrium point, namely the endemic equilibrium point . Thus, based on the dynamic analysis obtained, it is shown that the disease-free equilibrium point  is unstable and the endemic equilibrium point is locally asymptotically stable.


Dynamic Analysis; Mathematical Model of the Spread of COVID-19; Equilibrium Points; Phase Portrait

Full Text:



Ndaïrou, F., Area, I., Nieto, J. J., & Torres, D. F. (2020). Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals, 135, 109846.

Marzuki, I., Bachtiar, E., Zuhriyatun, F., Purba, A. M. V., Kurniasih, H., Purba, D. H., ... & Airlangga, E. (2021). COVID-19: Seribu Satu Wajah. Yayasan Kita Menulis.

Handayani, D., Hadi, D. R., Isbaniah, F., Burhan, E., & Agustin, H. (2020). Corona virus disease 2019. Jurnal Respirologi Indonesia, 40(2), 119-129.

Sasmita, N. R., Ikhwan, M., Suyanto, S., & Chongsuvivatwong, V. (2020). Optimal control on a mathematical model to pattern the progression of coronavirus disease 2019 (COVID-19) in Indonesia. Global Health Research and Policy, 5(1), 1-12.

Hidayati, N. A., Suryanto, A., & Kusumawinahyu, W. M. DYNAMICAL ANALYSIS OF FRACTIONAL ORDER ZIKV MODEL.

Annas, S., Pratama, M. I., Rifandi, M., Sanusi, W., & Side, S. (2020). Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos, Solitons & Fractals, 139, 110072.

Boyce, W.E & DiPrima, R.C. 2001. Elementary Differential Equations and Boundary Value Problems. New York: Von Hoffmann Press.

Wahab, W & Subiantoro A. 2013. Fundamental of Control System Stability Crtiterion-Routh Hurwitz. (diakses pada 12 April 2021).

Andari, Ari. 2017. Aljabar Linier Elementer. Malang: UB Press.

Ndii, Meksinanis Zadrak. 2018. Pemodelan Matematika Dinamika Populasi dan Penyebaran Penyakit Teori, Aplikasi, dan Numerik. Sleman: Deepublish Publisher

Hardiningsih, A, Y. 2010. Kajian Model Epidemik SIR Deterministik dan Skokastik Pada Waktu Diskrit. Surabaya: Jurusan Matematika ITS.

Garba, S. M., Lubuma, J. M. S., & Tsanou, B. (2020). Modeling the transmission dynamics of the COVID-19 Pandemic in South Africa. Mathematical biosciences, 328, 108441.

Biswas, M. H. A., Islam, M. A., Akter, S., Mandal, S., Khatun, M. S., Samad, S. A., ... & Khatun, M. R. (2020). Modelling the effect of self-immunity and the impacts of asymptomatic and symptomatic individuals on COVID-19 outbreak. CMES-Computer Modeling in Engineering & Sciences, 125(3), 1033-1060.

Kartono. 2012. Persamaan Diferensial Biasa Model Matematika Fenomena Perubahan. Yogyakarta: Graha Ilmu

Di Gennaro, F., Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., & Smith, L. (2020). Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. International journal of environmental research and public health, 17(8), 2690.



  • There are currently no refbacks.