Analisis Model Stokastik Penularan Virus Hepatitis B

Arina Nur Laila, Usman Pagalay, Heni Widayani

Abstract


The spread of hepatitis B virus (HBV) infection has been widely studied using the deterministic SIR model, in which individuals who recover from acute infection have temporary immunity to the virus. However, this deterministic model uses a constant rate of viral infection over time. This is not in accordance with the fact that the infection rate is a random parameter that depends on time. This study discusses the analysis of the stochastic model of hepatitis B virus transmission. The purpose of this study is to construct the SIR stochastic model by dividing the infection rate into two, namely the rate of acute and chronic infection following the Wiener process. The model is then searched for an analytical solution referring to the Ito formula. The analytical solution and the Wiener process are described by substituting parameter values in the form of acute and chronic infection rates (β+α), cure rate (γ), and initial values (S(0) and I(0)) to obtain the mean value (μ). and the standard deviation (σ) of dS(t) and dI(t). The results of the simulation show that the number of infected individuals (I(t)) will decrease rapidly if (γ) is greater but will increase rapidly if (β+α) and (I(0)) are greater.

Keywords


SIR Stochastic Model; Ito Formula; Hepatitis B Virus

Full Text:

PDF

References


DarmawatiD., NurW., & MusafiraM. (2019). Penaksiran Parameter Model SIS Stokastik Penyebaran Penyakit Malaria Dengan Metode Stepest Descent. SAINTIFIK, 5(2), 145-146.

Lekone, P.E., & B. F. Finkenstädt. 2006. Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study.Biometrics, 62 : 1170-1177.

Banks, Jerry, et al,. 2001. Third Edition Discrete-Event System Simulation, New Jersey: Prentice Hall

Nåsell, I. 2002. Stochastic Models of Some Endemic Infections. Mathematical Biosciences, 179: 1-19

Widoyono. 2011. Penyakit Tropis Epidemiologi, Penularan, Pencegahan dan

Pemberantasaanya. Edisi ke-2. Jakarta: Erlangga

Mustofa, S., Kurniawati, E. Hepatitis B :PanduanBagiDokterUmum. Aura

printing& Publishing, Bandar Lampung.(2013).

Soewignjo, S., 2008. Hepatitis Virus B Edisi 2. Penerbit Buku Kedokteran Egc, Jakarta.

Hethcote, H. W., The Mathematics Of Infections Diseases, SIAM Review 42 (2000), No. 4, 599-653

Kermack, W. O.; McKendrick, A. G. (1927). "A Contribution to the Mathematical Theory of Epidemics". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences115 (772): 700

Parzen, E., Stochastic Processes, Holden-Day Inc., United State of America,

Ndii, M. Z. (2018). Pemodelan Matematika Dinamika Populasi Dan Penyebaran Penyakit Teori, Aplikasi, Dan Numerik. Deepublish.

Klebaner, F.C. 1998. Introduction To Stochastic Calculus With Applications. London: Imperial College Press

T. Khan, II Hyo Jung & Gul Zaman. 2019. A stochastic model for the transmission dynamics of hepatitis B virus, Journal of Biological Dynamics, 13:1, 328-344

Yunita, Felin. 2013. Model Stokastik Susceptible Infected Recovered (SIR). Other thesis, Universitas Sebelas Maret

Karlin, Samuel & Taylor, Howard M. (1998). An Introduction to Stochastic Modeling, Academic Press

Hull, J.C. 2003. Option Future and Other Derivative. Toronto: Prentice Hall

Kloeden, P.E., and E.Platen. 1999. Aplication of Mathematics Stochastic Modelling and Applied Probability. Numerical Solution of Stochastic Differential Equations. New York: Springer




DOI: https://doi.org/10.18860/jrmm.v2i1.14467

Refbacks

  • There are currently no refbacks.