ANALISIS DINAMIK PENYEBARAN HUMAN PAPILLOMAVIRUS DENGAN PENGARUH VAKSINASI DAN SKRINING

Miftakhul Rosidah, Heni Widayani, Usman Pagalay

Abstract


Cervical cancer caused by Human Papillomavirus (HPV) is a serious health problem in Indonesia. The spread of HPV is still an unresolved problem even though a vaccine has been found and screening has been carried out in health facilities in Indonesia. In this study, the dynamic analysis of the HPV spread model was studied by categorizing the population into 6 sub-populations, namely the susceptible individual population (S(t)),  the vaccinated individual population (V(t)), the infected individual population who were not aware 〖(I〗_u (t)), population of infected and screened individuals 〖(I〗_s (t)), population of individuals exposed to cervical cancer (C(t)), and population of cured individuals (R(t)). The model describes the dynamic rate of HPV spread which has two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point. The results of this study indicate that the disease-free equilibrium point is unstable, meaning that there is still a possibility that infection will occur in the population. The numerical simulation illustrates that the percentage of individuals who are vaccinated will reduce the increase in the number of unconscious infected individuals and individuals with cervical cancer. Increasing the screening rate in the population will also reduce the number of unconsciously infected individuals and individuals with cervical cancer.

Keywords


HPV Mathematical Model; Behavioral; Analysis; Susceptible; Vaccinated; Unaware Infected; Screened Infected; Cervical cancer; Removed; Numerical Simulation

Full Text:

PDF

References


Ely Desyanawati, S. P. (2016). Simulation on the Spreading of Infectious Disease HIV/AIDS in Central Java Using SIR Epidemic Model (Susceptible, Infected, Removed). Jurnal Ilmiah Teknologi dan Informasi, 87.

Muhammad Ilham Aldika Akbar, B. A. (2020). Ginelologi PraktisKomprehensif. Surabaya: Airlannga Universitas Press.

Nurmaini Puspitasari, Y. A. (2019). Analisis Kestabilan Lokal Pada Model Matematik Kanker Serviks Akibat Human Papillomavirus (HPV). Ilmu Alam Dan Teknologi Terapan , 23-29.

Nyimvua Shaban, H. M. (2014). Modelling the Impact of Vaccination and Sreening on the Dynamics of Human Papillomavirus Infection. Journal of Math. Analysis, 441-454.

Lia Dwi Lestari, R. (2020). Travel Vaccine. Jurnal Human Care, 661-170.

Amala, C. R. (2018). Penilaian Uji Validitas Instrumen Skrining Hipertensi. Jurnal Bekala Epidemologi, 95-102.

Baiduri. (2002). Persamaan Diferensial dan Matematika Model . Malang: UMM press.

Waluya, S. B. (2006). Persamaan Diferensial . Yogyakarta: Graha Ilmu.

Nahdawiyah, S. A. (2020). Analisis Kestabilan Global dan Kontrol Optimal Model Penyakit Campak. Malang: tidak dipublikasikan .

Syafruddin Side, W. S. (2016). Analisis dan Simulasi Model SITR pada Penyebaran Penyakit Tuberkulosis dikota Makassar. Sainsmat, 191-204.

Boyce. (2009). Elementary Differensial Equations and Boundary Value Problems: Ninth Edition. United States: John Wiley dan Sons, Inc.

Finizio, J. G. (1988). Persamaan diferensial biasa dengan penerapan modern . Jakarta: Erlangga.




DOI: https://doi.org/10.18860/jrmm.v2i1.14712

Refbacks

  • There are currently no refbacks.