Analisis Ketahanan Hidup Pada Penderita Kanker Serviks Menggunakan Regresi Cox Proportional Hazard

Ummi Hafildah, Ria Dhea Layla Nur Karisma

Abstract


Survival analysis is a statistical method used to analyze data with time until the occurrence of a certain event which is commonly referred to as "failure". One of the objectives of survival analysis is to determine the effect of predictor variables on survival time. The purpose of this study was to determine the regression model and determine the hazard ratio of each factor that is thought to affect the survival of cervical cancer patients. The results of this study showed that the factors that influence patients with cervical cancer in their survival are stage II and stage III variables (the patient’s stage), complications, and a history of pregnancy (who have children 0-2).


Keywords


Survival; Cox Proportional Hazard Regression; Cervical Cancer; Kaplan Meier; Log Rank

Full Text:

PDF

References


p2p.kemkes.go.id, ,,Penyakit Kanker di Indonesia Berada Pada Urutan 8 di Asia Tenggara dan Urutan 23 di Asia," Kementerian Kesehatan RI, 31 Januari 2019. [Online]. Available: http://p2p.kemkes.go.id/penyakit-kanker-di-indonesia-berada-pada-urutan-8-di-asia-tenggara-dan-urutan-23-di-asia/.

H. Nurwijaya, Andrijono, & Suheimi, Cegah dan Deteksi Kanker Serviks, Jakarta: PT Elex Media Komputindo, 2010.

Kementerian Kesehatan RI, Buku Saku Pencegahan Kanker Leher Rahim & Kanker Payudara, Jakarta: Kementerian Kesehatan RI, 2009.

J. Harlan, Analisis Survival, Depok: Penerbit Gunadarma, 2017.

I. N. Aini, Extended Cox Model Untuk Time Independent Covariate yang Tidak Memenuhi Asumsi Proportional Hazard Pada Model Cox Proportional Hazard, 2011.

E. Amiani, Analisis Data Ketahanan Hidup Dengan Model Regresi Cox Proportional Hazard, 2018.

N. Riyandianci, Analisis Survival Pada Pasien Penderita Kanker Serviks di RSUD Dr. Soetomo Surabaya Menggunakan Stratified Cox dan Extended Cox, 2017

M. Wassie, Z. Argaw, & Kisa, Survival Status and Associated Factors of Death Among Cervical Cancer Patients Attending at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia: A Restropective Cohort Study, BMC Cancer, 1221.

R.G. Perrigot, Cliquet & M. Mesbah, Possible Application of Survival Analysis in Franchising Research, Int. Rev. Of Retail, Distribution and Consumer Research, Bd. 14(1), pp. 129-143, 2004.

D. G. Kleinbaum & M. Klein, Survival Analysis A Self Learning Text Third Edition, New York: Springer, 2012.

A. A. Hemandez, dkk, Factors Predicting Local Relapse And Survival In Patients Treated With Surgery For Breast Cancer, Asian Journal of Surgery, Bd. 4(7), pp. 755-760, 2019.

A.N. Afifah & S. W. Purnami, Uji Proportional Hazard Pada Penderita Kanker Serviks di RSUD Dr. Soetomo Surabaya, Jurnal Sains dan Seni ITS, Bd. 5(1), pp. 109-114, 2016.

Yasril & B. S. Kasjono, Analisis Multivariat untuk Penelitian Kesehatan Yogyakarta, Yogyakarta: Mitra Cendekia Press, 2008.

O. Afranda, dkk, Analisis Regresi Proportional Dari Cox Pada Data Waktu Tunggu Sarjana, Gaussian, Bd. 4(3), pp. 621-630, 2015.

Nurfain & S. W. Purnami, Analisis Regresi Cox Extended Pada Pasien Kusta di Kecamatan Brondong Kabupaten Lamongan, Jurnal Sains dan Seni ITS, Bd. 6(1), pp. 1-7, 2017.




DOI: https://doi.org/10.18860/jrmm.v2i2.15042

Refbacks

  • There are currently no refbacks.