Penerapan Metode Segmentasi Gabor Filter Dan Algoritma Support Vector Machine Untuk Pendeteksian Penyakit Daun Tomat
Abstract
This research discusses about processing a formulation that we can give to diseased tomato leaves. Gabor Filter is a method used to detect textures using frequency and orientation parameters. The Support Vector Machine (SVM) algorithm is an algorithm that can be used classifying tomato leaf diseases. The purpose of this research is to determine the accuracy of the Gabor Filter segmentation and the Support Vector Machine Algorithm for detecting tomato leaf disease to facilitate farmers in analyzing diseases on tomato leaves. The input will go through pre-processing of RGB pixels to Greyscale ones before being processed using Gabor Filter. This Gabor Filter process segments the image to produce a magnitude value. The results of the image magnitude values here will be seen and will enter the classification process using SVM. The SVM algorithm aims to find the best hyperlane on tomato leaves that have been segmented to separate classes in the input space. The application of the SVM method with class classification of tomato leaves by calculating the energy value and entropy of the extraction results, assisted by 12 features, namely: CiriR, Feature G, FeatureB, Standard DeviationR, Standard DeviationG, Standard DeviationB, SkewnessR, SkewnessG, SkewnessB, Mean, Energy, Entropy are used to the simplity classification process with a high degree of accuracy. The process of classification of tomato leaf disease with test data of 600 images managed to get an accuracy value of 74.1667%. In order to facilitate the performance of farmers in predicting tomato leaf disease.
Keywords
Full Text:
PDFReferences
M. Arief, “Klasifikasi Kematangan Buah Jeruk Berdasarkan Fitur Warna Menggunakan Metode SVM,” J. Ilmu Komput. dan Desain Komun. Vis., vol. 4, 2019.
N. P. Ningsih, E. Suryadi, L. Darmawan Bakti, dan B. Imran, “Klasifikasi Penyakit Early Blight Dan Late Blight Pada Tanaman Tomat Berdasarkan Citra Daun Menggunakan Metode Cnn Berbasis Website,” J. Kecerdasan Buatan dan Teknol. Inf., vol. 1, no. 3, hal. 27–35, 2022.
A. Mungki, P. P. Arhandi, dan N. A. Ariditya, “Identifikasi Penyakit Pada Daun Tomat Berdasarkan Fitur Warna Dan Tekstur,” J. Inform. Polinema, 2020.
R. A. Safitri, S. Nurdiani, D. Riana, dan S. Hadianti, “Klasifikasi Jenis Buah Apel Menggunakan Metode Orde 1 dengan Algoritma Multi Support-Vector Machines,” Paradig. - J. Komput. dan Inform., vol. 21, no. 2, hal. 167–172, 2019, doi: 10.31294/p.v21i2.6526.
R. P. Putra, Rahmadwati, dan O. Setyawati, “Klasifikasi Penyakit Tanaman Kedelai Melalui Tekstur Daun dengan Metode Gabor Filter,” J. EECCIS, vol. 12, no. 1, hal. 40–46, 2018.
I. M. Parapat dan M. T. Furqon, “Penerapan Metode Support Vector Machine ( SVM ) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” vol. 2, no. 10, hal. 3163–3169, 2018.
D. Putra, Pengolahan Citra Digital. Yogyakarta: Andi, 2010.
A. R. Hermawan, A. E. Wibowo, D. A. F, D. F. Ningrum, dan N. S. Liman, “Pengklasifikasian Daun Mangga , Salam Dan Sawo Dengan Menggunakan Metode Naive Bayes,” Progr. Stud. Inform. Progr. Teknol. Inf. dan Ilmu Komputer, Univ. Brawijaya, 2009.
P. Raharjo, “Pengenalan Ekspresi Wajah Berbasis Filter Gabor Dan Backpropagation Neural Network,” J. EECCIS, vol. 4, no. 1, hal. 12–17, 2010.
Shylesh, “Tomato Leaf Disease - Shylesh,” Kaggle, 2020. .
N. Arista, R. R. Yacoub, D. Suryadi, F. Imansyah, dan J. Marpaung, “Prapengolahan Citra Menggunakan Filter Gabor Berbasis Graphical User Interface ( Gui ) Untuk Pengenalan Wajah,” J. Tek. Elektro Univ. Tanjungpura, vol. 1, no. 1, 2016, [Daring]. Tersedia pada: https://jurnal.untan.ac.id/index.php/jteuntan/article/view/52586.
L. Leonardo, “Penerapan Metode Filter Gabor Untuk Analisis Fitur Tekstur Citra Pada Kain Songket,” J. Sist. Komput. dan Inform., vol. 1, no. 2, hal. 120, 2020, doi: 10.30865/json.v1i2.1942.
C. N. Santi, “Turn Color Images Into GrayScale and Binary Imagery,” Teknol. Inf. Din., vol. 16, no. 1, hal. 14–19, 2011.
M. Muchtar dan L. Cahyani, “Klasifikasi Citra Daun dengan Metode Gabor Co-Occurence,” J. Sist. Inf., vol. 7, 2016.
A. Kadir dan A. Susanto, Teori dan aplikasi pengolahan citra, no. May. Yogyakarta: Andi, 2013.
DOI: https://doi.org/10.18860/jrmm.v2i6.22023
Refbacks
- There are currently no refbacks.