Analisis Dinamik Model Respon Inflamasi Pada Paru-Paru

Muhammad Rosyid Arrofiqi, Usman Pagalay, Achmad Nasichuddin

Abstract


This study discusses the dynamic analysis of the inflammatory response model in the lungs. Then proceed with performing numerical simulations. This study was conducted to present the inflammatory response in the lungs. In the mathematical model of the inflammatory response, there are three variables, namely  (pathogen),  (immune system) and (inflammation). Dynamic analysis is carried out by determining the equilibrium point, the basic reproduction number , stability analysis of the equilibrium point. The results of this study obtained a basic reproduction number . The disease-free equilibrium point is unstable and the endemic equilibrium point is unstable when the parameter values in table 4.1 are used. The results of numerical simulations show that the population of pathogens  found in the body starts from the first day, which is 0.01, increases to 2.8 until the second week, decreasing constantly accompanied by the immune system in the human body so that it goes to 0 at infinity. While the immune defense population  in the human body rises to 4.4 and decreases slowly and constantly following the development of pathogens in the human body accompanied by the immune system itself. And the pro-inflammatory inflammation  population runs steadily at 0 to rises at 4.3 following human immune defense and falls at week 16 and continues to be consistent. The rate of inflammation follows a hyperbolic tan which is affected by  when t is infinite towards . When the parameter values  and  are increased, the pro-inflammatory inflammation will decrease and vice versa.


Keywords


Dynamic Analysis; Inflammatory Response; Disease Free; Endemic; Basic Reproductive Number

Full Text:

PDF

References


Andari, A. (2017). Aljabar Linear Elementer. Malang: UB Press.

Ardianto, Y. (2021, Maret 6). Memahami Metode Penelitian Kualitatif. Memahami Metode Penelitian Kualitatif, pp. 1-5.

Boyce, W. E., & Diprima, R. C. (2001). Elementary Differential Equations and Boundary Value Problems. New York: Phoenix Color Corporation.

Endah Kusumastuti, J. H. (2014). Ekspresi COX-2 dan Jumlah Neutrofil Fase Inflamasi pada Proses Penyembuhan Luka Setelah Pemberian Sistemik Ekstrak Etanolik Rosela (Hibiscus sabdariffa)(studi in vivo pada Tikus Wistar). 1-7.

Fithri, A. D. (2011). Titik Kesetimbangan Model Matematika pada Mekanisme Respon Imun Terhadap Infeksi Micobacterium Tuberkulosis di Paru-Paru. 1-156.

Finizio. N, L. (1988). Persamaan Diferensial Biasa dengan Penerapan Modern Edisi Kedua. Jakarta: Erlangga.

Husnaini,(2013). Penyakit Lahir Batin.Surabaya.

Hardiningsih, A. Y. (2010). Kajian Model Epidemi Sir Deterministik dan Stokastik Pada Waktu Diskrit. Jurusan Matematika Fakultas MIPA ITS, 1-11.

Kemenag. (2016, Februari 1). Qur'an Kemenag. Retrieved Maret 3, 2022, from Qur'an Kemenag: https://quran.kemenag.go.id/

Manchanda, H., Seidel, N., & dkk. (2014). Within-host influenza dynamics: A small-scale mathematical modeling approach. Elsevier BioSystems, 51-59.

Martcheva, M. (2015). An Introduction to Mathematical Epidemology. New York.

Minucci, S. B., Helse, R. L., & Reynolds, A. M. (2020). Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries. Frontiers in Applied Mathematics and Statistics, 6(36), 1-25.

Nafisa, D. Z. (2018). Kontrol Optimal Model Matematika Respon Imun Bawaan pada Makrofag di Paru-Paru yang Terinfeksi streptococcus pneumoniae. Malang: UIN Malang.

Nagle, R. K. (2018). Fundamentals of Differential Equations. Boston: Pearson.

Ndii, M. Z. (2018). Pemodelan Matematika Dinamika Populasi Dan Penyebaran Penyakit. Yogyakarta: Deepublish.

Resmawan, M, E., Nurwan, & N, A. (2020). Analisis Kontrol Optimal Pada Model Matematika Penyebaran Pengguna 87 Narkoba Dengan Faktor Edukasi. Jurnal Ilmiah Matematika dan Terapan, 238-248




DOI: https://doi.org/10.18860/jrmm.v3i1.22362

Refbacks

  • There are currently no refbacks.