Analisis Konstanta Euler-Mascheroni yang Diperumum pada Deret Harmonik
Abstract
The generalized Euler-Mascheroni constant analyzes functions or sequences with specific parameters in various scientific fields. As scientific knowledge advances, the generalized Euler-Mascheroni constant continues to undergo renewal. One example is found in "On Generalized Euler-Mascheroni Constants" by G. Abe-I-Kpeng, M.M. Iddirisu, and K. Nantomah in 2022. The purpose of this study is to analyze the relationship between the generalized Euler-Mascheroni constant and harmonic series, as well as to examine its connection with signed count permutations. The analysis involves decomposing the Riemann Zeta function and using Stirling numbers of the first kind. The methodology employed in this study was literature research. This study yields new theorems concerning the generalized Euler-Mascheroni constant.
Keywords
Full Text:
PDFReferences
Mortici, C. (2010). On new sequences converging towards the Euler–Mascheroni constant. Computers & Mathematics with Applications, 59(8), 2610-2614.
Garay, Oscar J. (2008). Extremals Of The Generalized Euler-Bernoulli Energy And Applications. JGSP 12, 27-61.
Olaikhan, S.A. (2021). An Introduction To The Harmonic Series And Logarithmic Integrals (For High School Students Up To Researchers). ISBN 9781736736012.
Iwaniec, H. (2014). Lectures on the Riemann Zeta Function. USA: American Mathematical Society.
Graham, Ronald L., Knuth, Donald E., Patashnik, Oren. (1989). Concrete Mathematics Second Edition. London: Greenwood Press.
Adamchik, Victor. (1997). On Stirling Numbers and Euler Sums. Journal of Computational and Applied Mathematics, 119-130
Kpeng, G.Abe-I., Iddrisu, M.M., & Nantomah, K. (2022). On Generalized Euler–Mascheroni Constants. Electronic Journal of Mathematical Analysis and Applications, 10(1), 226-235.
Cowen, C. C., Davidson, K. R., & Kaufman, R. P. (1980). Rearranging the alternating harmonic series. The American Mathematical Monthly, 87(10), 817-819
Dunham, W. (1999). Euler : The Master of Us All. Washington DC: The Mathematical Association Of America.
Herhyanto, N., & Gantini, T. (2009). Pengantar Statistika Matematika. Bandung: Yrama Widya
Olaikhan, S.A. (2021). An Introduction To The Harmonic Series And Logarithmic Integrals (For High School Students Up To Researchers). ISBN 9781736736012.
Karatsuba, A.A., & Voronin, S.M. (1992). The Riemann Zeta-Function. Berlin: Walter de Gruyter.
Havil, Julian. (2009). Gamma : Exploring Euler’s Constant. New Jersey: Prince University Press.
Glazer, E.M., McConnell, J.W. (2002). Real-Life Math : everyday use of mathemathical concept. New York: Addison-Wesley Publishing Company.
Erdos, P. (1932). Egy Kürschák-Féle Elemi Számelméleti Tétel Általánosítása (Generalization of an elementary number-theoretic theorem of K¨ursch´ak, in Hungarian), Mat. Fiz, Lapok 39, 17–24.
DOI: https://doi.org/10.18860/jrmm.v3i2.22447
Refbacks
- There are currently no refbacks.