Interpretasi Metode Gauss-Seidel pada Sistem Persamaan Linier Fuzzy dengan Bilangan Fuzzy Sigmoid
Abstract
A system of linear equations can be combined with a fuzzy number that produces a new equation, namely a system of fuzzy linear equations. The system of fuzzy linear equations has the general form , as an element with real numbers, as a variable of fuzzy numbers, and as a constant of fuzzy numbers. One kind of fuzzy number is sigmoid fuzzy number. The problem related to the system of fuzzy linear equations is how to solve the system of fuzzy linear equations. One method that can be used is using the Gauss-Seidel Method. This study aims to determine the results of the interpretation of the Gauss-Seidel Method to determine the solution of the fuzzy linear equation system. Based on the calculation results, it shows that the Gauss-Seidel Method does not always provide the right solution for fuzzy linear equation systems with fuzzy variables and constants in the form of sigmoid numbers expressed as cuts. The solution is considered correct if the substitution of the solution to the system of fuzzy linear equations and defuzzification and shows the same result.
Keywords
Full Text:
PDFReferences
E. R. Sari dan E. Alisah, “Studi Tentang Persamaan Fuzzy,” CAUCHY J. Mat. Murni dan Apl., vol. 2, no. 2, hal. 55–65, 2012, doi: 10.18860/ca.v2i2.2228.
A. Andari, Aljabar Linier Elementer. Malang: Malang: UB Press, 2017.
A. O. Sativa, S. Putra, dan Z. Zulkarnain, “Metode Gauss-seidel Prekondisi Untuk Mencari Solusi Sistem Persamaan Linear,” J. Online Mhs. Fak. Mat. dan Ilmu Pengetah. Alam Univ. Riau, vol. 2, no. 1, hal. 21–30, 2015.
S. Sukarna, M. Abdy, dan R. Rahmat, “Perbandingan Metode Iterasi Jacobi dan Metode Iterasi Gauss-Seidel dalam Menyelesaikan Sistem Persamaan Linear Fuzzy,” J. Math. Comput. Stat., vol. 2, no. 1, hal. 1, 2020, doi: 10.35580/jmathcos.v2i1.12447.
C. Rahmad, I. Deasy, dan E. Sandhya, Metode Numerik. Malang: Malang: Polinema Press, 2016.
A. R. Permata, “Penyelesaian Sistem Persamaan Linear Fuzzy Menggunakan Metode Dekomposisi Crout,” J. Math., vol. 1, hal. 20–27, 2018.
S. Kusumadewi dan H. Purnomo, Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Yogyakarta: Graha Ilmu, 2013.
M. M. Setiawan, Solusi Sistem Persamaan Linier Fuzzy dengan Bilangan Fuzzy Trapesium Menggunakan Metode Gauss-Jordan. (Skripsi Sarjana, Universitas Islam Negeri Maulana Malik Ibrahim Malang), 2019. [Daring]. Tersedia pada: http://etheses.uin-malang.ac.id/15023/1/13610105.pdf
T. Allahviranloo dan S. Salahshour, “Fuzzy symmetric solutions of fuzzy linear systems,” J. Comput. Appl. Math., vol. 235, no. 16, hal. 4545–4553, 2011, doi: 10.1016/j.cam.2010.02.042.
T. Allahviranloo, N. Mikaeilvand, N. A. Kiani, dan R. M. Shabestari, “Signed decomposition of fully fuzzy linear systems,” An Int. J. Appl. Appl. Math., vol. 3, no. 1, hal. 77–88, 2008.
F. Susilo, Himpunan & Logika Kabur Serta Aplikasinya. Yogyakarta: Yogyakarta: Graha Ilmu, 2006.
M. Matinfar, S. H. Nasseri, dan M. Sohrabi, “Solving Fuzzy Linear System of Equations by Using Householder Decomposition Method,” Appl. Math. Sci., vol. 2, no. 52, hal. 2569–2575, 2008.
I. Irmawati, I. Sukarsih, dan R. Respitawulan, “Solusi Sistem Persamaan Linear Fuzzy,” J. Teor. dan Terap. Mat., vol. 16, no. 2, hal. 1–8, 2017, doi: 10.29313/jmtm.v16i2.3412.
M. Dehghan dan B. Hashemi, “Iterative solution of fuzzy linear systems,” Appl. Math. Comput., vol. 175, no. 1, hal. 645–674, 2006, doi: 10.1016/j.amc.2005.07.033.
R. Munir, Metode Numerik. Bandung: Bandung: Penerbit Informatika, 2015.
DOI: https://doi.org/10.18860/jrmm.v3i5.27320
Refbacks
- There are currently no refbacks.