Backpropagation untuk Memprediksi Tingkat Inflasi di Kota Malang
Abstract
Backpropagation is a model of Artificial Neural Networks (ANN) that uses supervised learning to solve complex problems, such as predicting the inflation rate by being trained using forward learning methods and backward error correction. The inflation rate is the percentage change in prices of goods and services in the economy during a certain period. Throughout December 2022, the Central Bureau of Statistics recorded the inflation rate in Malang City at 0.58%. One of the causes is the increase in prices of rice and other commodities such as eggs, chicken, and cayenne pepper. From this, predictions need to be made to help prepare programs that must be carried out to overcome inflation. This research aims to determine the level of accuracy of the backpropagation algorithm by testing several parameters and finding out the results of inflation predictions in Malang City in 2019. The findings of this research are the best inflation prediction results were obtained with the 7-14-1 architectural model with the tanh activation function parameters, batch size 16, and number of epochs 1000, with accuracy results of 87.49%. From the results of these predictions, the highest inflation in Malang City is predicted to occur in January 2019 and the lowest inflation is predicted to occur in February 2019.
Keywords
Full Text:
PDFReferences
BPS Kota Malang. (2023). Malang Dalam Angka 2023. Malang: BPS Kota Malang.
Matondang, Z. A. (2013). Jaringan Syaraf Tiruan dengan Algoritma Backpropagation untuk Penentuan Kelulusan Sidang Skripsi. Pelita Informatika Budi Darma.
K Wong, A. W. (2019). Prediksi tingkat Inflasi dengan Menggunakan Metode Backpropagation Neural Network. Sains, Aplikasi, Komputasi dan Teknologi Informasi, 8-13..
B Hauriza, M. M. (2021). Prediksi Tingkat Inflasi Bulanan Indonesia Menggunakan Metode Jaringan Saraf Tiruan. Jurnal Teknologi dan Informasi, 151-157.
D Rakhmawati, M. N. (2023). Perbandingan Presiksi Inflasi di Indonesia Menggunakan Model Holt-Winters Exponential Smooting Additive dan Multiplicative. Jurnal Pendidikan Edutama, 55-60.
BPS Kota Malang. (2020). Inflasi Kota Malang 2019. Malang: BPS Kota Malang.
Wadi, H. (2021). Implementasi Jaringan Syaraf Tiruan Backpropagation menggunakan PYHTON GUI. Jakarta: Turida Publisher.
Heaton, Jeff. (2008). Introduction to Neural Networks for Java, 2nd Edition (2nd. ed.). Heaton Research, Inc.
Andrian, Y., & Wayahdi, M. R. (2014). Analisis Algoritma Inisialisasi Nguyen Widrow Pada Proses Prediksi Curah Hujan Kota Medan Menggunakan Metode Backpropagtion Neural Network. Seminar Nasional Informatika.
Ramadhona, G. (2018). Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation. Malang: Universitas Brawijaya.
Andrian, Y., & Wayahdi, M. R. (2014). Analisis Algoritma Inisialisasi Nguyen Widrow Pada Proses Prediksi Curah Hujan Kota Medan Menggunakan Metode
Backpropagtion Neural Network. Seminar Nasional Informatika.
R Sovia, M. Y. (2018). Bank Indonesia Interest Rate Prediction and Forecast With Backpropagation Neural Network. International Conference on Information Technology Systems and Innovation (ICITSI), 429-435.
Hartati, S. (2021). Kecerdasan Buatan Berbasis Pengetahuan. UGM Press.
Khairunnisa, J., & Syaharuddin, S. (2022). Prediksi Inflasi di Kota Mataram Menggunakan Bacpropagation Neural Network. In Seminar Nasional Lppm Ummat (Vol. 1, pp. 151-157)
Guido, A. C. (2017). Introduction to Machine Learning with Python. United States of America.: O’Reilly Media, Inc
DOI: https://doi.org/10.18860/jrmm.v3i6.28428
Refbacks
- There are currently no refbacks.