Indeks Konektivitas Eksentrik Edis Pada Graf Annihilator dari Ring Bilangan Bulat Modulo

Risma Amelia, Mohammad Nafie Jauhari, Erna Herawati

Abstract


This study discusses how the general formula of the Ediz eccentric connectivity index (IKEE) in the annihilator graph of the ring of integers modulo. This study aims to determine the Ediz eccentric connectivity index on the annihilator graph of the ring of modular integers , with  is a primer number for , and  is a positif integer. The initial step in conducting this research is to form an annihilator graph from the ring of integers of the modul  , then find the vertex degree and the eccentricity of the vertex on the annihilator graph which is used to calculate the Ediz eccentric connectivity index of each graph. After that, formulate a conjecture about the Ediz eccentric connectivity index on the annihilator graph of the ring of integers of the modul  , and the last one proves the hypothesis obtained. The results of this study is general formula for the Ediz eccentric conductivity index on the Annihilator graph of the ring of integers modulo  where p is a prime number and m is a positive integer.


Keywords


Graph Annihilator; Ring of Integer Modulo p^m; Ediz Eccentric Connectivity Index

Full Text:

PDF

References


M. J. Morgan, S. Mukwembi, and H. C. Swart, “On the eccentric connectivity index of a graph,” Discrete Math., vol. 311, no. 13, pp. 1229–1234, 2011, doi: 10.1016/j.disc.2009.12.013.

S. Ediz, “On the Ediz eccentric connectivity index of a graph,” Optoelectron. Adv. Mater. Rapid Commun., vol. 5, no. 11, pp. 1263–1264, 2011.

G. Chartrand, L. Lesniak, and P. Zhang, Graph and Digraphs Sixth Edition. New York: CRC Press, 2016.

T. A. Kusmayadi and N. A. Sudibyo, “Eccentric Digraph of Cocktail Party Graph and Hypercube,” IPTEK J. Technol. Sci., vol. 22, no. 4, pp. 198–204, 2011, doi: 10.12962/j20882033.v22i4.74.

D. Joyce, Introduction to Modern Algebra. Clark University, 2017.

Harold M. Stark, “An introduction to number theory.” 1978.

C. Domicolo and H. Mahmoud, “Degree-Based Gini Index for Graphs,” Probab. Eng. Informational Sci., vol. 34(2), pp. 157–171, 2020.

Abdussakir, Nilna, and Fifi, Teori Graf. Malang: UIN Malang Press, 2009.

A. Badawi, “On the Annihilator Graph of a Commutative Ring,” Commun. Algebr., vol. 42, no. 1, pp. 108–121, 2014, doi: 10.1080/00927872.2012.707262.

K. D. Joshi, Foundations of Discrete Mathematics. India. KK. Gupta for New Age International, 1989.

J. A. Gallian, “Contemporary Abstract Algebra (chapter 2),” vol. 7, no. 1, pp. 37–72, 2015, [Online]. Available: https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil wars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625.

H. W. M. Patty, Sifat-Sifat Semigrup Sebagai Graf Pembagi Nol. 2016.

W. H. & dkk Irawan, Pengantar Teori Bilangan. Malang: UIN Maliki PRESS, 2014.

L. Gilbert and J. Gilbert, Elements of Modern Algebra, Eight Edition. USA: Brooks/ Cole Cengage Learning., 2015.

B. S. Reddy, R. S. Jain, and N. Laxmikanth, “Eccentric Topological Index of the Zero Divisor graph $Gamma[mathbb {Z}_n]$,” pp. 1–13, 2020, [Online]. Available: http://arxiv.org/abs/2001.01220.




DOI: https://doi.org/10.18860/jrmm.v4i2.30059

Refbacks

  • There are currently no refbacks.