Dynamical Analysis of New Fractional Order ZIKV Model with Nonlinear Incidence Rate

Nurul Anggraeni Hidayati

Abstract


The ZIKV model provided is derived by adapting the model proposed by \cite{Hidayati2021}. This study enhances the existing model by transforming it into a fractional-order ZIKV model with a nonlinear incidence rate. The model's equilibrium points are identified, and the stability conditions for each point are evaluated using the Routh-Hurwitz criterion. A numerical simulation is performed to validate the stability study results. Numerical simulations further demonstrate the impact of the order $\alpha$ on the stability of the equilibrium point inside the model.

Keywords


Dynamical analysis, ZIKV model, Nonlinear incidence rate, FDE, Equilibrium point, Fractional order, Stability analysis, Routh-Hurwitz, Predictor-Corrector

Full Text:

PDF

References


1. N.A. Hidayati, A. Suryanto, W.M. Kusumawinahyu.(2021). Dynamical analysis of fractional order ZIKV model. Advances in Mathemat-
ics: Scientific Journal, 10(5), 2469-2481.
2. E. Bonyah, K.O. Okosun. (2016). Mathematical modeling of Zika virus. Asian Pacific Journal of Tropical Disease, 6 , 673-679.
3. Wattanasirikosone, C. Modnak. (2020). A diffusion model of Zika virus with human-vector transmission dynamics and control strategy
including social distancing study, International Journal of Dynamics and Control, 9, 350–362.
4. P. Suparit, A. Wiratsudakul, M. Charin. (2018). A mathematical model for Zika virus transmission dynamics with a time-dependent
mosquito biting rate. Theoretical Biology and Medical Modelling, 15, 1-11.
5. M. Kharis, A.N. Cahyono. (2020). The dynamics of the basic model for the Zika epidemic. Journal of Physics: Conference Series,
1567(2020), 1-6.
6. C. Ding, N. Tao, Y. Zhu. (2016). A mathematical model of Zika virus and its optimal control. IEEE Conference on Decision and Control,
2642-2645.
7. Y.A. Terefe, H. Gaff, M. Kamga, L. van der Mescht. (2018). Mathematics of a model for Zika transmission dynamics. Theory in Bio-
sciences, 137, 209-218.
8. M. Khalil, A.A.M. Arafa, A. Sayed. (2018). A variable fractional order network model of zika virus. Journal of Fractional Calculus and
Applications, 9(1), 204-221.
9. M.A. Khan, S. Ullah, M. Farhan. (2019). The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 4(1), 134-146.
10. H. Elsaka, H. Ahmed. (2016). A fractional order network model for ZIKA. bioRxiv, 1-10.
11. P. Andayani. (2019). a Mathematical model of Zika Virus transmission with impact of awareness by media. Proceedings of International
Mathematical Sciences, 1(2), 60-68.
12. A. Mouaouine, A. Boukhpuima, K. Hattaf, N. Yousfi. (2018). a fractional order SIR epidemic model with nonlinear incidence rate.
Advances in Difference Equations, 160, 1-9.
13. S. Olaniyi. (2018). Dynamics of Zika Virus Model with Nonlinear Incidence and Optimal Control Strategies. Applied Mathematics and
Information Sciences, 12(5). 969-982.
14. S. Rezapour, H. Mohammadi, A. Jajarmi.(2020). A mathematical analysis and simulation for Zika virus model with time fractional
derivative. Mathematical Methods in the Applied Sciences, 589, 87-92.
15. S. Rezapour, H. Mohammadi, A. Jajarmi. (2020). A new mathematical model for Zika virus transmission. Advances in Difference Equa-
tions, 589, 1-15.
16. M. Farman, A. Akgul, S. Askar, T. Botmart, A. Ahmad, H. Ahmad. (2021). Modeling and analysis of fractional order Zika model. AIMS
Mathematics, 7(3), 3912-3938.
17. E. Bonyah, M.A. Khan, K.O. Okosun, S. Islam. (2017). A Theoretical model for Zika Virus Transmission. PLoS ONE, 12(10), e0185540.
18. K. Diethelm, A.D. Freed. (1999). The FracPECE subroutine for the numerical solution of differential equations of fractional order. Lecture
Notes: Forschung un. Wissenschaftliches Rechnen 1998, eds. S. Heinzel, and T. Plesser, Gessellschaft für wissenschaftliche Datenverar-
beitung, Göttingen, 57-71.
19. K. Diethelm. (2010). The Analysis of Fractional Fifferential Equations: An application-oriented exposition using differential operators of
Caputo type. Springer-Verlag: Berlin Heidelberg.
20. O.C. Ibe. (2013). Basic Concepts in Stochastic Processes. Elsevier Inc: London.
21. I. Petráš. (2011). Fractional Nonlinear Systems: Modeling, Analysis and Simulation. Springer-Verlag: Berlin Heidelberg.
22. E. Ahmed, A. El-Sayed, H.A.A. El-Saka. (2006). On some Routh-Hurwitz conditions for fractional order differential equations and their
applications in Lorenz, Rössler, Chua and Chen systems. Physics Letters A, 358, 1-4.
23. A. Alshehri, M. E. Hajji. (2021). Mathematical study for Zika virus transmission with general incidence rate. AIMS Mathematics, 7(4),
7117-7142.
24. N.K. Goswami, A.K. Srivastav, M. Ghosh, B. Shanmukha. (2018). Mathematical modeling of Zika Virus disease with nonlinear incidence
and optimal control. Journal of Physics: Conference Series, 1000(2018), 012114.
25. N.K. Goswami, B. Shanmukha. (2021). Mathematical modeling of Zika Virus Transmission with optimal control strategies. Computational
Methods for Differential Equations, 9(1), 117-145.




DOI: https://doi.org/10.18860/jrmm.v4i4.31194

Refbacks

  • There are currently no refbacks.