Implementasi Kode Goppa dalam Kriptosistem McEliece untuk Keamanan Data Terhadap Serangan Kuantum

Lili Khoiriyah, Muhammad Khudzaifah, Erna Herawati

Abstract


The importance of data security in the digital era is growing, particularly in the face of quantum computing threats against classical cryptographic algorithms. One of the main candidates for post-quantum cryptography is the McEliece cryptosystem, which employs error-correcting codes to enhance encryption strength. This study implements Goppa codes within the McEliece cryptosystem to increase resistance against quantum attacks. A degree-two polynomial over a finite field with sixteen elements was used, resulting in code parameters with a length of twelve, a dimension of four, and the ability to correct two errors. Encryption is carried out by multiplying the binary message with the public key and adding a random error vector, while decryption utilizes the private key to correct errors through syndrome calculation. The results demonstrate that employing Goppa codes enhances system security by complicating the ciphertext structure, thereby strengthening resilience against quantum-based attacks. This implementation confirms that classical coding techniques remain relevant and effective in supporting modern cryptography.


Keywords


Goppa Code; McEliece Cryptosystem; Post-Quantum Cryptography; Data Security; Error-Correcting

Full Text:

PDF

References


Anggraeni, W. (2004). Deteksi Dan Koreksi Kesalahan Informasi Dalam Sandi Biner Dengan Menggunakan Metode Hamming. JUTI, 3, 101-108.

Ariyus , D. (2008). Pengantar Ilmu Kriptografi. Yogyakarta: ANDI.

Ziaurrahman, M., Utami, E., & Wibowo, F. W. (2019). Modifikasi Kriptografi Klasik Vigenere Cipher Menggunakan One Time Pad Dengan Enkripsi Berlanjut. Jurnal Informasi Interaktif, Vol.4.

Prayitno, A., & Nurdin. (2017). Analisa Dan Implementasi Kriptografi Pada Pesan Rahasia Menggunakan Algoritma Cipher Transposition. JESIK:Jurnal Elektronik Sistem Informasi dan Komputer, 3.

Waliprana, W. E. (2011). Studi dan Implementasi Algoritma kunci publik McEliece. Bandung: Makalah, Institut Teknologi Bandung.

Siim, S. (2015). Study of McEliece Cryptosystem. Research Seminar in Seminar Crytography.

Surnawani, Jarkasih, S., & Fatimah, U. (2022). Penggunaan Public Key Infrastructure Kunci Persetujuan (Key Agreement). TripleA : Jurnal Pendidikan Teknologi Informasi , 97-102.

Niven, I., Zuckerman, H. S., & Montgomery, H. L. (1980). An Introduction to the Theory of Numbers (Fifth edition ed.). New York: John Wiley and Sons, 1991.

Ling, S., & Xing, C. (2004). Coding Theory. New York: Cambridge University Press.

Sadikin , R. (2012 ). Kriptografi untuk Keamanan Jaringan. Yogyakarta: C.V. ANDI OFFSET.

Childs, L. N. (2019). Cryptology and Error Correction. New York: Springer International Publishing.

Stallings, W. (2003). Cryptography and Network Security. New Jersey: Pearson Education.

Singh, H. (2020). Code based Cryptography: Classic McEliece.

Rosdiana. (2015). Sekuritas Sistem Dengan Kriptografi. al-Khwarizmi, 21-32.

Chen, B., & Zhang, G. (2023). The number of extended irreducible binary Goppa codes. China: IEEE Transactions on Information Theory.




DOI: https://doi.org/10.18860/jrmm.v4i3.31212

Refbacks

  • There are currently no refbacks.