Penerapan Model ARFIMA-LSTM Menggunakan Variasi Estimasi Parameter Pembeda Dalam Meramalkan data IHPBI
Abstract
Keywords
Full Text:
PDFReferences
[1] S. Idris, R. Goejantoro, and Y. N. Nasution, “Pemodelan dan peramalan indeks harga perdagangan besar (ihpb) dengan menggunakan arfima (studi kasus: Ihpb provinsi kalimantan timur bulan januari 2002–desember 2006 dan januari 2009-september 2013),” Jurnal Eksponensial, vol. 5, no. 2,pp. 85–95, 2014.
[2] Badan Pusat Statistik (BPS) Indonesia, Indeks harga perdagangan besar indonesia tahun 2023,Diakses pada November 2024, 2023.
[3] B. Setyawan, N. I. Riwajanti, and S. Ismanu, “Analisis peramalan menggunakan arima pada indeks harga perdagangan besar indonesia kelompok komoditi pertanian tahun 2000-2019,” Media Mahardhika, vol. 18, no. 2, pp. 198–205, 2020. DOI: 10.29062/mahardika.v18i2.148.
[4] Hartini, F. Insani, Novriyanto, and S. Sanjaya, “Implementasi Long Short Term Memory Neural Network Untuk Prediksi Indeks Harga Perdagangan Besar,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri, pp. 44–51, 2022.
[5] I. K. Hasan, M. Janur, and N. Nurwan, “Penerapan model arfima-garch menggunakan variasi estimasi parameter pembeda d pada data long memory,” J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika, vol. 16, no. 2, pp. 474–485, 2023. DOI: 10.36456/jstat.vol16.no2.a8041.
[6] Z. Zulfikar, A. Wanto, and Z. M. Nasution, “Analisis dalam melihat perkembangan indeks harga perdagangan besar menurut sektor di indonesia menggunakan algoritma backpropagation,” Pros.Semin. Nas. Ris. Inf. Sci, vol. 1, p. 359, 2019. DOI: 10.30645/senaris.v1i0.41.
[7] H.-H. Huang, N. H. Chan, K. Chen, and C.-K. Ing, “Consistent order selection for arfima processes,” The Annals of Statistics, vol. 50, no. 3, pp. 1297–1319, 2022. DOI: 10 . 1214 / 21 -AOS2149.
[8] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132 306, 2020. DOI: 10.1016/j.physd.2019.132306.
[9] A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, and P. Kumam, “Fractional neuro-sequential arfima-lstm for financial market forecasting,” Ieee Access, vol. 8, pp. 71 326–71 338, 2020. DOI: 10.1109/ACCESS.2020.2985763.
[10] G. Anuraga, A. Indrasetianingsih, and M. Athoillah, “Pelatihan pengujian hipotesis statistika dasar dengan software r,” indonesian, BUDIMAS: Jurnal Pengabdian Masyarakat, vol. 3, no. 2, 2021.
[11] R. D. Hanifa, M. Mustafid, and A. R. Hakim, “Pemodelan autoregressive fractionally integrated moving average dengan efek exponential garch (arfima-egarch) untuk prediksi harga beras di kota semarang,” Jurnal Gaussian, vol. 10, no. 2, pp. 279–292, 2021. DOI: 10.14710/j.gauss.10.2.279-292.
[12] T. Ardi, R. Santoso, and A. Prahutama, “Implementasi subset autoregressive menggunakan paket fitar,” Jurnal Gaussian, vol. 6, no. 4, pp. 510–519, 2017. DOI: 10.14710/j.gauss.6.4.510-519.
[13] G. Bhardwaj and N. R. Swanson, “An empirical investigation of the usefulness of arfima models for predicting macroeconomic and financial time series,” Journal of Econometrics, vol. 131, no. 1,pp. 539–578, 2006. DOI: https://doi.org/10.1016/j.jeconom.2005.01.016.
[14] M. J. I. Akbar and I. Kharisudin, “Model arfima untuk analisis data kecepatan angin di bandara internasional ahmad yani,” Unnes Journal of Mathematics, vol. 8, no. 2, pp. 89–101, 2019. DOI: 10.15294/ujm.v8i2.38037.
[15] M. S. Suryono and R. Oetama, “Peramalan terhadap forex dengan metode arima studi kasus gbp/usd,” Ultimatics: Jurnal Teknik Informatika, vol. 11, no. 1, pp. 6–10, 2019. DOI: 10.31937/ti.v11i1.1238.
[16] W. Wei, Time Series Analysis: Univariate and Multivariate Methods (Time Series Analysis: Univariate and Multivariate Methods). Pearson Addison Wesley, 2006. Available online.
[17] S. Nurman, M. Nusrang, et al., “Analysis of rice production forecast in maros district using the box-jenkins method with the arima model,” ARRUS Journal of Mathematics and Applied Science, vol. 2, no. 1, pp. 36–48, 2022. DOI: 10.35877/mathscience731.
[18] N. D. L. Imani, T. Tarno, and B. A. Saputra, “Prediksi harga daging sapi di kabupaten brebes menggunakan pemodelan arfima dengan efek garch,” Jurnal Gaussian, vol. 12, no. 4, pp. 570–580, 2024. DOI: 10.14710/j.gauss.12.4.570-580.
[19] L. Ding, Y. Luo, Y. Lin, and Y. Huang, “Revisiting the relations between hurst exponent and fractional differencing parameter for long memory,” Physica A: Statistical Mechanics and its Applications, vol. 566, p. 125 603, 2021. DOI: 10.1016/j.physa.2020.125603.
[20] D. M. Putri and A. Aghsilni, “Estimasi model terbaik untuk peramalan harga saham pt. polychem indonesia tbk. dengan arima,” MAp (Mathematics and Applications) Journal, vol. 1, no. 2, pp. 1–12, 2019. DOI: 10.15548/map.v1i2.1176.
[21] D. Christian and S. Halim, “Peramalan multivariat untuk menentukan harga emas global,” Jurnal Teknik Industri, vol. 18, no. 2, pp. 137–144, 2016. DOI: 10.9744/jti.18.2.137-144.
[22] J. B. Ramsey, “Tests for specification errors in classical linear least-squares regression analysis,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 31, no. 2, pp. 350–371, Dec. 2018. DOI: 10 . 1111 / j . 2517 - 6161 . 1969 . tb00796 . x. eprint: https : / /academic . oup . com / jrsssb / article - pdf / 31 / 2 / 350 / 49095363 / jrsssb _31_2_350.pdf. Available online.
[23] D. I. Purnama, “Peramalan jumlah penumpang datang melalui transportasi udara di sulawesi tengah menggunakan support vector regression (svr),” Jurnal Ilmiah Matematika dan Terapan, vol. 17, no. 1, 2020. DOI: 10.22487/2540766X.2020.v17.i1.15186.
[24] C. Olah, Understanding lstm networks, https://colah.github.io/posts/2015-08-Understanding-LSTMs/, Accessed: 2024-11-30, 2015.
[25] G. Ciaburro and B. Venkateswaran, Neural Networks with R: Smart models using CNN, RNN,deep learning, and artificial intelligence principles. Packt Publishing, 2017. Available online.
[26] T. S. Wibawa, “Pemodelan hybrid arima-lstm dalam meramalkan harga saham (studi kasus: Harga penutupan saham bank bca),” Ph.D. dissertation, Universitas Brawijaya, 2021.
[27] R. Yotenka and F. F. El Huda, “Implementasi long short-term memory pada harga saham perusahaan perkebunan di indonesia,” UJMC (Unisda Journal of Mathematics and Computer Science), vol. 6, no. 01, pp. 9–18, 2020. DOI: 10.52166/ujmc.v6i01.1927.
[28] R. Rowan, L. Muflikhah, and I. Cholissodin, “Peramalan kasus positif covid-19 di jawa timur menggunakan metode hybrid arima-lstm,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 6, no. 9, pp. 4146–4153, 2022.
DOI: https://doi.org/10.18860/jrmm.v4i5.33303
Refbacks
- There are currently no refbacks.


1.png)
.png)




