Penerapan Algoritma Ant Colony pada Pendistribusian Barang
Abstract
Ant Colony Optimization (ACO) is an algorithm used to solve optimization problems, inspired by the behavior of ant colonies in find of food sources. The main issue addressed in this study is how to implement the Ant Colony algorithm to determine the shortest route for goods distribution and to analyze the influence of the parameters α (pheromone intensity) and β (heuristic value) on the effectiveness of route search. This study used a simulation approach involving several delivery vehicles for building materials in Malang Raya. The testing was conducted using 33 delivery locations, which were then divided into five delivery clusters. The shortest routes generated by the algorithm were found to be more effective when compared to routes suggested by Google Maps. The results show that the implementation of the ACO algorithm significantly reduces travel distance, with an average effectiveness of 16.26% across the five vehicles that were tested. Parameter testing indicates that higher β values (β ≥ 5) significantly influence the search for the shortest route, while variation in α does not significantly affect the results. Thus, this study concludes that the ACO algorithm is effective in optimizing delivery routes, especially when employing the appropriate combination of parameters.
Keywords
Full Text:
PDFReferences
[1] R. Y. C. Sianturi, B. Rahayudi, and A. W. Widodo, “Implementasi algoritma ant colony optimization untuk optimasi rute distribusi produk kebutuhan pokok dari toko sasana bonofie mojoroto,” Pengembangan Teknologi Informasi dan Ilmu Komputer, pp. 3190–3197, 2021.
[2] S. Rohman, L. Zakaria, A. Asmiati, and A. Nuryaman, “Optimisasi travelling salesman problem dengan algoritma genetika pada kasus pendistribusian barang pt. pos indonesia di kota bandar lampung,” Jurnal Matematika Integratif, pp. 61–73, 2020.
[3] M. R. Djalal and F. Faisal, “Ant colony based pid tuned parameters for controlling synchronous motor,” Jurnal TAM (Technology Acceptance Model), pp. 67–73, 2019.
[4] D. Udjulawa and S. Oktarina, “Penerapan algoritma ant colony optimization untuk pencarian rute terpendek lokasi wisata (studi kasus wisata di kota palembang),” Jurnal Ilmu Komputer, pp. 26– 33, 2022.
[5] Karjono, Moedjiono, and D. Kurniawan, “Ant colony optimization,” Jurnal TIKOM, pp. 119–125, 2016.
[6] M. R. Faizal, K. A. B. Sitorus, M. Tandililing, and S. H. Baharuddin, “Sistem pencarian rute terbaik ekspedisi barang menggunakan metode ant colony pada pt. pelindo tpknm,” Jurnal STIMIK Profesional Makasar, pp. 1–8, 2021.
[7] Y. S. Tyas and W. Prijodiprodjo, “Aplikasi pencarian rute terbaik dengan metode ant colony optimization (aco),” Indonesian Journal of Computing and Cybernetics System, pp. 55–64, 2013.
[8] V. Risqiyanti, H. Yasin, and R. Santoso, “Pencarian jalur terpendek menggunakan metode algoritma ant colony optimization pada gui matlab (studi kasus: Pt. distriversa buana mas cabang purwokerto),” Jurnal Gaussian, pp. 272–284, 2019.
[9] D. K. Situmorang and D. Guslan, “Analisis rute pendistribusian dengan menggunakan metode ant colony optimization dalam persoalan vehicle routing problem pada kantor pos boyolali,” Jurnal Logistik Bisnis, pp. 51–59, 2018.
[10] Musdalipa and A. Sahari, “Penentuan jalur terpendek pendistribusian barang jalur nugraha ekakurir (jne) menggunakan algoritma semut (studi kasus jne dewi sartika palu),” Jurnal Ilmiah Matematika dan Terapan, pp. 84–94, 2021.
[11] D. W. Nugraha, A. Amriana, and R. Setiawaty, “Implementasi algoritma ant colony optimization (aco) pada pencarian jalur terpendek automatic teller machine (atm) di kota palu,” Jurnal Nasional Informatika dan Teknologi Jaringan, pp. 191–202, 2020.
[12] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization by a colony of coorporation agents,” IEEE Systems, Man, and Cybernetics Society, pp. 1–13, 1996.
[13] M. Dorigo and T. Stützle, Ant Colony Optimization. Massachusetts Institute of Technology, 2004.
[14] M. I. S. Kirom and A. A. Soebroto, “Implementasi algoritma ant colony optimization untuk rekomendasi rute terpendek pada usaha thrifting di kota malang,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, pp. 1–8, 2017.
[15] A. D. Astami, C. Fatichah, and V. Hariadi, “Indikasi parameter yang berpengaruh pada ant colony optimization yang dimodifikasi pada penyelesaian travelling salesman problem,” Jurnal Teknik Pomits, pp. 1–5, 2013
DOI: https://doi.org/10.18860/jrmm.v5i1.34852
Refbacks
- There are currently no refbacks.


1.png)
.png)




