Prediksi Wisatawan Mancanegara di Indonesia Menggunakan Metode SARIMAX dengan Efek Variasi Kalender Libur Nasional

Desya Neydi Putri Pakaya, Novianita Achmad, Isran K Hasan, Djihad Wungguli, Siti Nurmardia Abdussamad

Abstract


Fluctuations in the number of foreign tourist arrivals often produce outlier values that can interfere with the accuracy of the forecasting model. This study uses a boxplot approach to detect outliers, followed by Natural Logarithm (ln) transformation as a treatment step. The Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) method is applied by considering three exogenous variables that show the effect of variations in the National Holiday calendar in the form of Nyepi Day, Idul Fitri Day and year-end holidays. The results of the analysis show that the three variables have a positive effect on the increase in the number of foreign tourist arrivals, where Nyepi Day makes the largest contribution compared to the other two holiday periods. Model 2 (0,1,1)(1,0,1)[12] was selected as the most optimal model based on the evaluation results of several models that have been compared. This model shows excellent performance, indicated by the Mean Absolute Percentage Error (MAPE) value of 3.75\% which indicates that the model has very high prediction accuracy. So that the SARIMAX model is effective in modeling and predicting the number of foreign tourist visits in Indonesia.


Keywords


Libur Nasional; Outlier; SARIMAX; Variasi Kalender; Wisatawan Mancanegara

Full Text:

PDF

References


C. Aponno, “Kontribusi sektor pariwisata dan pertumbuhan ekonomi di Provinsi Maluku,” Jurnal Ekonomi, Sosial & Humaniora, vol. 2, no. 05, pp. 111–118, 2020. Available online. [2] V. Reza, “Pariwisata halal dalam pengembangan ekonomi Indonesia,” Jurnal An-Nahl, vol. 7, no. 2, pp. 106–112, 2020. doi: 10.54576/annahl.v7i2.20. [3] L. Santoso and P. Priyadi, “Mengoptimalkan proses pembersihan data dalam analisis big data menggunakan pipeline berbasis AI,” Elkom: Jurnal Elektronika dan Komputer, vol. 17, no. 2, pp. 657–666, 2024. doi: 10.51903/elkom.v17i2.2311. [4] N. H. Latief, I. Setiawan, et al., “Peramalan curah hujan di Kota Makassar dengan menggunakan metode SARIMAX,” Statistika, vol. 22, no. 1, pp. 55–63, 2022. doi: 10.29313/statistika.v22i1.990. [5] R. Wahyudi, M. Kom, H. Nambo, et al., Kombinasi Metode SARIMA dengan PARCD untuk Prediksi Kasus Covid-19. Zahira Media Publisher, 2021, vol. 1. [6] A. N. Rais, R. Rousyati, I. J. Thira, D. N. Kholifah, N. Purwati, and Y. M. Kristania, “Evaluasi metode forecasting pada data kunjungan wisatawan mancanegara ke Indonesia,” EVOLUSI: Jurnal Sains dan Manajemen, vol. 8, no. 2, 2020. doi: 10.31294/evolusi.v8i2.8971. [7] N. P. N. Hendayanti and M. Nurhidayati, “Perbandingan metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dengan Support Vector Regression (SVR) dalam memprediksi jumlah kunjungan wisatawan mancanegara ke Bali,” Jurnal Varian, vol. 3, no. 2, pp. 149–162, 2020. doi: 10.30812/varian.v3i2.668. [8] F. Andika, S. Dayanti, F. Dewi, et al., “Peramalan jumlah kunjungan wisatawan mancanegara ke Provinsi Aceh menggunakan Fuzzy Time Series Chen,” Jurnal Ilmiah Matematika dan Terapan, vol. 20, no. 1, pp. 15–24, 2023. doi: 10.22487/2540766X.2023.v20.i1.16168. [9] P. R. Sihombing, S. Suryadiningrat, D. A. Sunarjo, and Y. P. A. C. Yuda, “Identifikasi data outlier (pencilan) dan kenormalan data pada data univariat serta alternatif penyelesaiannya,” Jurnal Ekonomi dan Statistik Indonesia, vol. 2, no. 3, pp. 307–316, 2022. doi: 10.11594/jesi.02.03.07. [10] M. Syukron, R. Santoso, and T. Widiharih, “Perbandingan metode SMOTE Random Forest dan SMOTE XGBoost untuk klasifikasi tingkat penyakit hepatitis C pada imbalance class data,” Jurnal Gaussian, vol. 9, no. 3, pp. 227–236, 2020. doi: 10.14710/j.gauss.9.3.227-236. [11] N. A. Lestari and A. M. A. Pabulo, “Pengaruh rasio solvabilitas, rasio likuiditas dan rasio profitabilitas terhadap nilai perusahaan,” Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA), vol. 7, no. 3, pp. 1249–1266, 2023. doi: 10.31955/mea.v7i3.3530. [12] H. Annisa Khoiri, Analisis Deret Waktu Univariat, 2023. Available online. [13] M. I. Rizki and T. A. Taqiyyuddin, “Penerapan model SARIMA untuk memprediksi tingkat inflasi di Indonesia,” Jurnal Sains Matematika dan Statistika, vol. 7, no. 2, pp. 62–72, 2021. doi: 10.24014/jsms.v7i2.13168. [14] Muryanto, “Pemodelan ARIMA dan SARIMA untuk peramalan indeks harga konsumen Kota Balikpapan,” BESTARI: Buletin Statistik dan Aplikasi Terkini, vol. 1, no. 2, pp. 11–28, 2021. Available online. [15] H. Hayati, N. N. Debataraja, and S. Martha, “Prediksi data jumlah penumpang kereta dengan efek variasi kalender pada model SARIMAX,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 10, no. 4, 2021. doi: 10.26418/bbimst.v10i04.49536. [16] Ď. Peter and P. Silvia, “ARIMA vs. ARIMAX – Which approach is better to analyze and forecast macroeconomic time series,” in Proceedings of 30th International Conference Mathematical Methods in Economics, vol. 2, pp. 136–140, 2019. Available online. [17] S. Nurwahdania and W. Sulistijanti, “Prediksi produksi beras di Provinsi Jawa Timur menggunakan Musiman Autoregressive Terintegrasi Moving Average dengan metode Exogenous Input (SARIMAX),” EDUSAINTEK, vol. 4, 2020. Available online. [18] I. Fadliani, I. Purnamasari, and W. Wasono, “Peramalan dengan metode SARIMA pada data inflasi dan identifikasi tipe outlier (Studi kasus: Data inflasi Indonesia tahun 2008–2014),” Jurnal Statistika Universitas Muhammadiyah Semarang, vol. 9, no. 2, pp. 109–116, 2021. doi: 10.26714/jsunimus.9.2.2021.109-116. [19] R. Agustin, “Peramalan data intermiten menggunakan metode Autoregressive Integrated Moving Average dan Neural Network (ARIMA-NN),” Ph.D. diss., Institut Teknologi Sepuluh Nopember, 2018. Available online. [20] A. Dirgantara, A. L. Jinda, M. F. Rinanda, I. M. Nur, and F. Fauzi, “Peramalan inflasi di Kota Surakarta menggunakan model Autoregressive Integrated Moving Average (ARIMA),” EDUSAINTEK, vol. 4, 2020. Available online. [21] A. S. Kinanta, I. F. Amri, S. A. W. Sari, M. Al Haris, I. M. Sidqi, and M. F. Choirudin, “Predict of average humidity in Central Java climatology station using the SARIMAX method (Seasonal Autoregressive Integrated Moving Average with Exogenous Variables) with average temperature as the exogenous variable,” PARAMETER: Jurnal Matematika, Statistika dan Terapannya, vol. 3, no. 02, pp. 93–106, 2021. Available online.




DOI: https://doi.org/10.18860/jrmm.v4i6.34937

Refbacks

  • There are currently no refbacks.