Implementasi Simulated Annealing untuk Penentuan Rute pada Jaringan
Abstract
Abstract—Recently computer networks are increasingly complex. It needs to be a supporting device for network management such as a router. Router is a device that plays an important role in the routing process. In a router stored information in the form of routing paths, where the information includes data and which routers will be passed. In certain cases, a router can have more than one gateway. This is because the router needs to send data packets to several networks that have different segments. Such cases can be handled by using the appropriate routing path selection rules. The routing problem can be regarded as a traveling salesman problem (TSP), where a mechanism is needed to determine the shortest route to be traversed. The author implements the Simulated Annealing Algorithm because it can produce an optimal solution with light computing, so that the routing process can be more effective and efficient.
Index Terms—Computer Network, Routing, Simulated Annealing, Travelling Salesman Problem
Abstrak–-Jaringan komputer saat ini semakin kompleks. Perlu adanya suatu perangkat pendukung untuk manajemen jaringan seperti router. Router merupakan perangkat yang berperan penting dalam proses routing. Pada sebuah router tersimpan informasi berupa jalur routing, dimana informasi tersebut mencakup data dan router mana saja yang akan dilewati. Pada kasus tertentu, router dapat memiliki lebih dari satu gateway. Hal ini disebabkan karena router perlu mengirimkan paket data ke beberapa jaringan yang memiliki segmen berbeda. Kasus tersebut dapat ditangani dengan menggunakan aturan pemilihan jalur routing yang tepat. Permasalahan routing dapat dikatakan sebagai suatu permasalahan travelling salesman problem (TSP), dimana diperlukan suatu mekanisme dalam menentukan rute terpendek untuk dilalui. Penulis mengimplementasikan Algoritma Simulated Annealing karena dapat menghasilkan solusi yang optimal dengan komputasi ringan, sehingga proses routing dapat lebih efektif dan efisien.
Kata Kunci—Jaringan Komputer, Penentuan Rute, Travelling Salesman Problem, Algoritma Simulated Annealing
Keywords
Full Text:
PDFReferences
G. E. Yuliastuti, C. N. Prabiantissa, S. Agustini, and D. H. Sulaksono, “Optimasi Rute Jaringan Mikrotik dengan Algoritme Genetika,” in Prosiding Seminar Nasional Sains dan Teknologi Terapan VIII, 2020, no. October, pp. 209–216.
G. E. Yuliastuti, W. F. Mahmudy, and A. M. Rizki, “Implementation of Genetic Algorithm to Solving Travelling Salesman Problem with Time Window (TSP-TW) for Scheduling Tourist Destinations in Malang City,” J. Inf. Technol. Comput. Sci., vol. 2, no. 1, pp. 1–10, 2017.
M. Irfan, “Penyelesaian Travelling Salesman Problem (TSP) Menggunakan Algoritma Hill Climbing dan MATLAB,” J. Mat., vol. 17, no. 1, pp. 13–20, 2018, doi: 10.29313/jmtm.v17i1.3090.
S. E. Ramadhania and S. Rani, “Implementasi Kombinasi Algoritma Genetika dan Tabu Search untuk Penyelesaian Travelling Salesman Problem,” Automata, 2021.
R. N. Puteri, A. W. Widodo, and I. Cholissodin, “Optimasi Multiple Travelling Salesman Problem Pada Pendistribusian Air Minum Menggunakan Algoritme Particle Swarm Optimization ( Studi Kasus : UD . Tosa Malang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 9, pp. 842–848, 2017.
G. E. Yuliastuti, W. F. Mahmudy, and A. M. Rizki, “Penanganan Fuzzy Time Window pada Travelling Salesman Problem (TSP) dengan Penerapan Algoritma Genetika,” MATICS J. Ilmu Komput. dan Teknol. Inf., vol. 9, no. 1, pp. 38–43, 2017.
R. Hidayati, I. Guntoro, and S. Junianti, “Penggunaan Metode Simulated Annealing untuk Penyelesaian Travelling Salesman Problem,” CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 217–221, 2019, [Online]. Available: https://jurnal.unimed.ac.id/2012/index.php/cess/article/view/13626.
D. Edi, “Kajian Algoritma Routing dalam Jaringan Komputer,” J. Inform. UKM, vol. II, no. 3, 2006.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science (80-. )., vol. 220, no. 4598, pp. 671–680, 1983.
J. B. C. Chagas, U. E. F. Silveira, M. P. L. Benedito, and A. G. Santos, “Simulated Annealing Metaheuristic for the Double Vehicle Routing Problem with Multiple Stacks,” pp. 1311–1316, 2016, doi: 10.1109/ITSC.2016.7795726.
G. E. Yuliastuti, A. M. Rizki, W. F. Mahmudy, and I. P. Tama, “Optimization of Multi-Product Aggregate Production Planning using Hybrid Simulated Annealing and Adaptive Genetic Algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 11, pp. 484–489, 2019, doi: 10.14569/IJACSA.2019.0101167.
G. E. Yuliastuti, A. M. Rizki, W. F. Mahmudy, and I. P. Tama, “Determining Optimum Production Quantity on Multi-Product Home Textile Industry by Simulated Annealing,” J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 159–168, 2018, doi: 10.25126/jitecs.20183264.
B. D. Setiawan and A. Pinandito, “Optimasi Kunjungan Objek Wisata dengan Menggunakan Algoritma Genetik,” in Prosiding Seminar Nasional Teknologi dan Rekayasa Informasi 2016, 2016, p. 71.
DOI: https://doi.org/10.18860/mat.v13i2.12969
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Gusti Eka Yuliastuti, Citra Nurina Prabiantissa, Agung Mustika Rizki
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal is indexed by :
_______________________________________________________________________________________________________________
Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN : 2477-2550