Comparison of Different Classification Techniques to Predict Student Graduation

Aan Fuad Subarkah, Ririen Kusumawati, M Imamudin

Abstract


Every year, the number of students accepted at the Maulana Malik Ibrahim State Islamic University of Malang continues to increase. Still, not all students can graduate on time according to the specified study period, resulting in a buildup of students who have not graduated according to their graduation period. One of the aspects evaluated in the Study Program accreditation process is the student graduation rate. Apart from that, for each semester, Study Programs are also required to report educational data to DIKTI, and student graduation is one of the factors considered in the report. There is an imbalance between the number of students graduating each year and the number of new students accepted. To overcome this problem, it is necessary to predict student graduation to determine whether they will graduate on time. In science and data analysis, predictions are often used to make predictions based on existing data and information. Classification models in predicting student graduation include the Nave Bayes method, Support Vector Machine SVM, and Random Forest, as well as the level of accuracy of these three methods. From the results of experiments and model evaluations carried out, with data from 458 Informatics Engineering Study Program students with details of 366 training data and 92 testing data, it was obtained that the SVM model had the highest accuracy, reaching around 87% and Random Forest also had good accuracy, around 82%. At the same time, the Naïve Bayes model has lower accuracy, around 76%.

Full Text:

PDF

References


[1] Mashlahah, Prediksi Kelulusan Mahasiswa Menggunakan Metode Decision Tree Dengan Penerapan Algoritma C4.5. 2013.

[2] R. Thaniket, Kusrini, and E. T. Luthf, “Prediksi Kelulusan Mahasiswa Tepat Waktu,” J. FATEKSA J. Teknol. dan rekayasa, vol. 13, no. 2, pp. 69–83, 2019.

[3] A. Rahmayanti, L. Rusdiana, and S. Suratno, “Perbandingan Metode Algoritma C4.5 Dan Naïve Bayes Untuk Memprediksi Kelulusan Mahasiswa,” Walisongo J. Inf. Technol., vol. 4, no. 1, pp. 11–22, 2022, doi: 10.21580/wjit.2022.4.1.9654.

[4] P. Agus, Yu. R. W. Utami, and W. L. YS, “Penerapan Algoritma K-Nearest Neighbors Untuk Prediksi Kelulusan Mahasiswa Pada STMIK Sinar Nusantara Surakarta,” TIKomSiN, vol. Vol 5,No 1, pp. 27–31, 2017.

[5] E. P. Rohmawan, “281628-Prediksi-Kelulusan-Mahasiswa-Tepat-Waktu-42Eb4C1B,” J. Ilm. MATRIK, p. 3, 2018.

[6] H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.

[7] A. Sabathos Mananta and G. Arther Sandag, “Prediksi Kelulusan Mahasiswa Dalam Memilih Program Magister Menggunakan Algoritma K-NN,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 10, no. 2, pp. 90–96, 2021, doi: 10.30591/smartcomp.v10i2.2488.

[8] Oon Wira Yuda, Darmawan Tuti, Lim Sheih Yee, and Susanti, “Penerapan Penerapan Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Random Forest,” SATIN - Sains dan Teknol. Inf., vol. 8, no. 2, pp. 122–131, Dec. 2022, doi: 10.33372/stn.v8i2.885.

[9] M. R. Qisthiano, T. B. Kurniawan, E. S. Negara, and M. Akbar, “Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 987, 2021, doi: 10.30865/mib.v5i3.3030.

[10] O. Bangun, H. Mawengkang, and S. Efendi, “Metode Algoritma Support Vector Machine (SVM) Linier Dalam Memprediksi Kelulusan Mahasiswa,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2006, 2022, doi: 10.30865/mib.v6i4.4572.

[11] M. L. Mu’tashim and A. Zaidiah, “Klasifikasi Ketepatan Lama Studi Mahasiswa Dengan Algoritma Random Forest Dan Gradient Boosting (Studi Kasus Fakultas Ilmu Komputer Universitas Pembangunan Nasional Veteran Jakarta),” Pros. Semin. Nas. Mhs. Bid. Ilmu Komput. dan Apl., vol. 4, no. 1, pp. 155–166, 2023.

[12] B. Yusuf, M. Qalbi, B. Basrul, I. Dwitawati, M. Malahayati, and M. Ellyadi, “Implementasi Algoritma Naive Bayes Dan Random Forest Dalam Memprediksi Prestasi Akademik Mahasiswa Universitas Islam Negeri Ar-Raniry Banda Aceh,” Cybersp. J. Pendidik. Teknol. Inf., vol. 4, no. 1, p. 50, 2020, doi: 10.22373/cj.v4i1.7247.

[13] G. S. Suwardika and I. K. P. Suniantara, “Analisis Random Forest Pada Klasifikasi Cart Ketidaktepatan Waktu Kelulusan Mahasiswa Universitas Terbuka,” BAREKENG J. Ilmu Mat. dan Terap., vol. 13, no. 3, pp. 177–184, 2019, doi: 10.30598/barekengvol13iss3pp177-184ar910.




DOI: https://doi.org/10.18860/mat.v15i2.24095

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Aan Fuad Subarkah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The journal is indexed by :

Dimensions Sinta CrossRef GoogleScholar
Index Copernicus Moraref Portal Garuda

 

_______________________________________________________________________________________________________________

Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________

Creative Commons License
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN :  2477-2550