Comparison Various Analytical Approaches to Find The Most Efficient and Effective Method for Peak Hour Identification
Abstract
Full Text:
PDFReferences
[1] Z. Xu, L. Zhang, S. Yang and N. Jiang, "Peak Period Demand Forecasting with Proxy Data: GNN-Enhanced Meta-Learning," 2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, 2024, pp. 726-735, doi: 10.1109/WACVW60836.2024.00129.
[2] B. Chae, C. Sheu, E.O. Park, "The value of data, machine learning, and deep learning in restaurant demand forecasting: Insights and lessons learned from a large restaurant chain", Decision Support Systems, Volume 184, 2024,114291, ISSN 0167-9236.
[3] Haque A, Akther N, Khan I, Agarwal K, Uddin N, “Artificial Intelligence in Retail Marketing: Research Agenda Based on Bibliometric Reflection and Content Analysis (2000–2023)”. Informatics.2024;11(4):74.https://doi.org/10.3390/informatics11040074
[4] Hasan, M.R., Kabir, M.A., Shuvro, R.A., & Das, P. (2022). « A Comparative Study on Forecasting of Retail Sales. arXiv:2203.06848
[5] Windrasari, S.N., et al. (2025). Predictive Sales Analysis in Coffee Shops Using Random Forest. MALCOM J. Machine Learn & CS, 5(3), 1000–1011.
[6] Panay, B.; Baloian, N.; Pino, J.A.; Peñafiel, S.; Frez, J.; Fuenzalida, C.; Sanson, H.; Zurita, G. Forecasting Key Retail Performance Indicators Using Interpretable Regression. Sensors 2021, 21, 1874. https://doi.org/10.3390/s21051874
[7] Ogunseye, E.O., Oladejo, E.A. & Akinola, S.O. (2024): Predicting Retail Sales Using Machine Learning Techniques: A Comparative Study. Journal of Behavioural Informatics, Digital Humanities and Development Rese Vol. 10 No. 3. Pp 1-16. https://www.isteams.net/behavioralinformaticsjournal dx.doi.org/10.22624/AIMS/BHI/V10N3P1
[8] M. R. Hasan, M. A. Kabir, R. A. Shuvro, and P. Das, "A Comparative Study on Forecasting of Retail Sales," arXiv preprint arXiv:2203.06848, 2022. [Online]. Available: https://arxiv.org/abs/2203.06848.
[9] N. D. Wang, Chia-Nan. Dang, T.T, Hsueh, Ming-Hsien & Do, Ngoc. (2023). Enhancement of Sales Forecast Using Hybrid Sarima and Extreme Machine Learning: A Case for a Jewelry Retailer in Viet Nam. SSRN Electronic Journal. 10.2139/ssrn.4330707.
[10] İnce, Melike Nur, and Çağatay Taşdemir. 2024. "Forecasting Retail Sales for Furniture and Furnishing Items through the Employment of Multiple Linear Regression and Holt–Winters Models", Systems 12,no.6:219.https://doi.org/10.3390/systems12060219
[11] Hyndman, R. J., & Athanasopoulos, G. (2018). "Forecasting: Principles and Practice (2nd ed.)". OTexts. https://arxiv.org/ftp/arxiv/papers/1302/1302.6613.pdf
[12] Kim, S., & Kim, H. (2016). "Performance Evaluation of Prophet and STL-ETS methods for Load Forecasting". IEEE Proceedings.
[13] Rajeswari, G., et al. (2024). "Forecasting Retail Sales for Furniture and Furnishing Items through the Employment of Multiple Linear Regression and Holt-Winters Models. Systems", 12(6), 219. https://www.mdpi.com/2079-8954/12/6/219
[14] Tan, K., & Wah, C. (2025). Power consumption prediction for electric vehicle charging stations and forecasting income. Scientific Reports, 14, 6344. https://www.nature.com/articles/s41598-024-56507-2
[15] Anytime Staff. (n.d.). Maximising restaurant sales during peak hours. Available: https://anytimestaff.com.au/maximising-restaurant-sales-during-peak-hours/
DOI: https://doi.org/10.18860/mat.v17i2.29193
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Anggi Gustiningsih Hapsani, Mayang Anglingsari Putri

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal is indexed by :
_______________________________________________________________________________________________________________
Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________
![]()
This work is licensed under a CC-BY-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN : 2477-2550

