Comparison of Linear Regression, Decision Tree Regression, and Random Forest Regression Algorithms in Predicting Baldness Risk
Abstract
Keywords
Full Text:
PDFReferences
[1] I. Sina et al., “HAIR LOSS AND ALOPECIA,” vol. 20, no. 2, 2021.
[2] N. Sa, P. S. Biologi, and U. N. Padang, “Literature Review : Peran Hormon Testosteron terhadap Androgenetic Alopecia,” vol. 8, pp. 30472–30482, 2024.
[3] E. Fitri, “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 58–64, 2023, doi: 10.52158/jacost.v4i1.491.
[4] Farhanuddin, Sarah Ennola Karina Sihombing, and Yahfizham, “Komparasi Multiple Linear Regression dan Random Forest Regression Dalam Memprediksi Anggaran Biaya Manajemen Proyek Sistem Informasi,” J. Comput. Digit. Bus., vol. 3, no. 2, pp. 86–97, 2024, doi: 10.56427/jcbd.v3i2.408.
[5] F. Hidayah, S. J. Angesti, and Y. P. Widyastuti, “Prediksi Harga Rumah di Boston Menggunakan Metode Linear Regression, SVR, Decision Tree dan Random Forest Regression,” pp. 1–9.
[6] M. A. Sembiring, F. W. Sembiring, and S. Informasi, “Analisa Kinerja Model Regresi Dalam Machine Learning,” vol. 8, no. 1, pp. 144–152, 2024.
[7] D. Eko Waluyo et al., “Implementasi Algoritma Regresi pada Machine Learning untuk Prediksi Indeks Harga Saham Gabungan,” Univ. Dian Nuswantoro, Semarang Jln. Imam Bonjol, vol. 9, no. 1, pp. 12–17, 2024.
[8] N. S. Soraya and H. Hendry, “Komparasi linear regression, random forest regression, dan multilayer perceptron regression untuk prediksi tren musik TikTok,” Aiti, vol. 20, no. 2, pp. 191–205, 2023, doi: 10.24246/aiti.v20i2.191-205.
[9] D. Pramesti and Wiga Maulana Baihaqi, “Perbandingan Prediksi Jumlah Transaksi Ojek Online Menggunakan Regresi Linier Dan Random Forest,” Gener. J., vol. 7, no. 3, pp. 21–30, 2023, doi: 10.29407/gj.v7i3.20676.
[10] I. H. Maula, “Kemungkinan Kebotakan | Kaggle.” Accessed: Dec. 05, 2024. [Online]. Available: https://www.kaggle.com/datasets/itsnahm/baldness-probability
[11] I. Nurdin, Sugiman, and Sunarmi, “Penerapan Kombinasi Metode Ridge Regression (RR) dan Metode Generalized Least Square (GLS) untuk Mengatasi Masalah Multikolinearitas dan Autokorelasi,” J. Mipa, vol. 41, no. 1, pp. 58–68, 2018.
[12] G. Chairunisa et al., “Life Expectancy Prediction Using Decision Tree, Random Forest, Gradient Boosting, and XGBoost Regressions,” J. Sintak, vol. 2, no. 2, pp. 71–82, 2024, doi: 10.62375/jsintak.v2i2.249.
[13] Diana Tri Susetianingtias, Eka Patriya, and Rodiah, “Model Random Forest Regression Untuk Peramalan Penyebaran Covid-19 Di Indonesia,” Decod. J. Pendidik. Teknol. Inf., vol. 2, no. 2, pp. 84–95, 2022, doi: 10.51454/decode.v2i2.48.
[14] H. Nuha, “Mean Squared Error (MSE) dan Penggunaannya,” Papers.Ssrn.Com, vol. 52, pp. 1–1, 2023, [Online]. Available: https://ssrn.com/abstract=4420880
[15] H. Hernandez, “Vol. 8, 2023-10,” vol. 8, pp. 1–43, 2023, doi: 10.13140/RG.2.2.26570.13769.
DOI: https://doi.org/10.18860/mat.v17i2.30256
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sebastianus Adi Santoso Mola, Alfonsus Maria De Liguori Goru, Christian Jaquelino Lamapaha, Yoseph Kurubingan Bekayo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal is indexed by :
_______________________________________________________________________________________________________________
Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________
![]()
This work is licensed under a CC-BY-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN : 2477-2550

