QUERY ANSWERING SYSTEM OF SHAHIH HADITH MUTTAFAQUN ‘ALAIH USING INDONESIAN THESAURUS BASED ON QUERY EXPANSION AND NAÏVE BAYES CLASSIFIER

Muhammad Fairuz Zumar Rounaqi, Cahyo Crysdian, Roro Inda Melani

Abstract


Abstract— Hadith are all the words, deeds and provisions of the Prophet Muhammad SAW that are used as the second of Islamic law after Al-Quran. The purpose of this study is to make an Information Retrieval system called the Query Answering System is expected to facilitate users in searching and finding the hadith documents as the user's needs. This study implements the Naïve Bayes Classifier method combined with Indonesian thesaurus as a query expansion to find the hadith documents that relevant to the input query. Based on the testing of 50 query data, the test results show that the use of query expansion gives better results than without using query expansion. Where based on testing of the top 1 data without using query expansion obtained an average recall value of 62%, an average precision value of 62%, an average accuracy value of 92.4% and an average value of the f-measure of 62%, while testing using query expansion obtained an average recall value of 66%, an average precision value of 66%, an average accuracy value of 93.2% and an average f -measure value of 66%. Based on the test results, the use of query expansion shows an improvement in the average recall value of 4%, an improvement in the average precision value of 4%, and an improvement in the average accuracy value of 0.8% and an improvement in the average f-measure value of 4% compared on without using query expansion.

 

Index Terms—hadith, information retrieval, query expansion, naïve bayes. 


Keywords


ilmu komputer; sains; teknologi informasi; sains islam; teknik informatika; komputer; teknik komputer;journal;matics journal;jurnal matics;penelitian;riset;research;technology;information technology;computer science

Full Text:

PDF

References


Baqi, M. F. (2015). AL Lu' Lu' Wal Marjan, Muttafaqun 'Alaih Shahih Bukhari. Solo: Beirut.

Ginting, S. L., & Trinada, R. P. (2014). Teknik Data Mining Menggunakan Metode Bayes Classifier Untuk Optimalisasi Pencarian Pada Aplikasi Perpustakaan. JATI UNIKOM, 14.

Yadav, D. P. (2014). Document-Document Similarity Matrix and Naive-Bayes Classification to Web Information Retrieval. International Journal of Engineering Research and General Science Volume 2, 7.

Shahabadkar, D. R., Reddy, Y. V., Khrisna, B. M., & & Devi, T. (2017). Enhanced Query Expansion For Web Information Retrieval. International Journal of Civil Engineering and Technology (IJCIET). International Journal of Civil Engineering and Technology (IJCIET), Volume 8 , Issue 8, 6.

Suyanto, S. M. (2017). Data Mining Untuk Klasifikasi Dan Klasterisasi Data. Bandung: INFORMATIKA.

Hasugian. (2006). Penggunaan bahasa alamiah dan kosa kata terkendali dalam sistem temu balik informasi berbasis teks, departemen studi perpustakaan dan informasi universitas sumatera utara. Medan: Pustaka.




DOI: https://doi.org/10.18860/mat.v12i1.8320

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Muhammad Fairuz Zumar Rounaqi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The journal is indexed by :

Dimensions Sinta CrossRef GoogleScholar
Index Copernicus Moraref Portal Garuda

 

_______________________________________________________________________________________________________________

Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________

Creative Commons License
This work is licensed under a CC-BY-NC-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN :  2477-2550