Ruang l^p pada Norm-2 Lengkap

Sri Utami, Hairur Rahman, Dewi Ismiarti

Abstract


The space l^p with 1≤p<∞ is the set of real numbers that satisfy _(n=1)^∞▒〖|x_n |^p<∞〗.The function in the vector space X which has real value which fulfills the norm-2 properties is denoted by ,⋅‖ and the pair (X,‖⋅,⋅‖) is called the norm-2 space.A norm-2 space is said to be complete or called a Banach-2 space if every Cauchy sequence in the space converges to an element in that space.This research was conducted to prove the l^p space in the complete norm-2.The first step to prove the completeness is to prove that the norm contained in l^p with 1≤p<∞ satisfies the properties of norm-2.Next, prove that the norm derived from norm-2 is equivalent to the norm in l^p.Next shows that every Cauchy sequence in space l^p converges to an element in space l^p.Based on this proof, it is found that (l^p,‖⋅,⋅‖) is a complete norm-2 space.


Keywords


l^p space; Norm-2 space; Banach space.

Full Text:

PDF

References


E. Kreyzig, Introductory Functional Analysis with Applications, New York: John Willey & Sons, 1978.

S. Konca, M. Idris and H. Gunawan, "A new 2-inner product p-summable sequences," Egyptian Mathematical Journal, vol. 24, pp. 244-249, 2016.

C. Alsina, J. Sikorska and M. S. Thomas, Norm Derivatives Characterizations Of Inner Product Spaces, vol. 1. No.3, Singapore: World Scientific, 2010.

M. N. Aris and M. Nur, "Kelengkapan Ruang lp pada Ruang Norm-n," Jurnal Matematika Statistika dan Komputasi, vol. 10, pp. 124-131, 2014.

M. A. Ackoglu, P. F. Bartha and D. M. Ha, Analysis in Vector Spaces, vol. 1, New York: John Willey, 2009.

U. Rafflesia, "Kekonvergenan Suatu Barisan Pada Ruang Norm-2," Jurnal Gradien, vol. 4, pp. 333-336, 2008.

A. Kobin, Analysis of Banach Spaces, New York: Springer, 2014.

J. B. Conway, A Course in Functional Analysis Second Edition, New York: Springer, 1990.

H. Gunawan, "The Space of p-summable Sequences and Its Natural n-Norm," Mathematics Subject Classification, pp. 1-13, 2001.

R. G. Bartle and D. R. Sherbet, Introduction to Real Analysis Fourth Edition, Amerika: John Willey & Sons, 2000.

S. Kumarasen, Topology of Metric Spaces, Mumbai: Alpha Science Ltd, 2005.

J. Manuhutu, Y. A. Lesnua and H. Batkunde, "Ruang Norm-2 dan Ruang Hasil Kali Dalam-2," Jurnal Matematika Integratif, vol. 10, pp. 139-145, 2014.

M. Nur, "Ruang Norm-n dan Ruang Hasil Kali Dalam," Jurnal Matematika Statistika dan Komputasi, pp. 86-91, 2012.

F. Y. Rumlawang, "Fixed Point Theorem in 2-Normed Spaces," Pure and Applied Mathematical Journal, pp. 42-46, 2020.

S. M. Gazali, Fungsional-n Linear Terbatas dan Ortogonalitas di Ruang Norm-n, Bandung: ITB, 2012.




DOI: https://doi.org/10.18860/jrmm.v1i4.14464

Refbacks

  • There are currently no refbacks.